Мышь назначение принципы работы. Устройство компьютерной мыши

В это уроке я расскажу про виды компьютерных мышей. Мы рассмотрим шариковые, оптические и лазерные мышки.

Виды компьтерных мышей

Компьютерная мышь - это устройство, с помощью которого можно выбирать какие-либо объекты на экране компьютера и управлять ими.

По способу подключения бывают проводными и беспроводными. Друг от друга отличаются прежде всего по принципу работы. Наиболее часто встречаются следующие виды:

  • Шариковые;
  • Оптические;
  • Лазерные.

Остановимся на каждом виде подробнее.

Шариковая

Устаревший и наиболее дешевый вариант - достаточно большого размера, с прорезиненым шариком, чуть выступающим из основания.

Своим вращением он задает определенное направление двум роликам внутри, а те передают их на специальные датчики, которые и «превращают» движение мышки в перемещение курсора на мониторе.

Но есть один минус: если шарик загрязняется, мышка начинает заедать. Периодическая чистка просто необходима для нормальной работы. Кроме того, такая мышь требует определенной поверхности, ведь точность работы зависит от сцепления устройства с ней.

Оптическая

Оптическая компьютерная мышь не имеет вращающихся элементов - принцип ее работы качественно отличается от предыдущего варианта.

Ее конструкция представляет собой маленькую камеру, которая делает до тысячи снимков в секунду. При перемещении камера фотографирует рабочую поверхность, освещая ее. Процессор обрабатывает эти «снимки» и отправляет сигнал в компьютер - курсор перемещается.

Такое устройство может работать практически на любой поверхности, кроме зеркальной, и в чистке не нуждается. Кроме того, такая мышка миниатюрнее и легче шариковой.

Недостатком оптических мышек является их свечение при выключенном компьютере . Но это проблема решаемая: компьютер нужно просто отключать от линии напряжения.

Кстати, во многих современных моделях этот вопрос и вовсе легко решается: на самой мышке есть специальная кнопка, отключающая устройство.

Лазерная

Лазерная мышь - это усовершенствованный вариант оптической. Принцип работы такой же, только для подсветки используется не светодиод, а лазер.

Такая доработка сделала устройство практически идеальным: мышь работает на любой поверхности (в том числе на стеклянной и зеркальной), она более надежна, экономична и точна - движения курсора максимально соответствуют реальному перемещению.

Кроме того, даже при включенном компьютере она вряд ли будет мешать спать по ночам - лазерная подсветка очень слабенькая.

Проводные и беспроводные

Проводные мышки подключаются к компьютеру при помощи специального кабеля (провода).

Беспроводные же не имеют «хвоста» - они передают сигнал на компьютер через радиоволны или через Bluetooth. Подключаются при помощи специального маленького приемника (по виду очень похожего на флешку), который вставляется в USB разъем.

Из недостатков следует отметить, что все беспроводные из-за отсутствия кабеля лишены стационарного питания. Поэтому их нужно подзаряжать отдельно - от батарей и аккумуляторов.

Кроме того, «бесхвостые» могут иметь сбои в работе из-за не всегда устойчивого соединения. Ну, и нельзя не отметить, что по цене они могут значительно превосходить «хвостатых».

Кнопки компьютерной мыши

Кнопки - главные элементы управления. Именно с их помощью пользователь совершает основные действия: открывает объекты, выделяет, перемещает и так далее. Их количество в современных моделях может колебаться, но для работы достаточно всего двух кнопок и колеса прокрутки.

Именно такой вариант компьютерной мыши - две кнопки и колесико - сегодня наиболее распространен.

На заметку . Часто встречаются мышки, где есть маленькая кнопочка возле колесика. Ее функция – это двойное нажатие левой кнопкой.

Некоторые современные мыши имеют дополнительную кнопку сбоку, под большим пальцем. Ее можно запрограммировать для выполнения каких-либо действий: скажем, на открытие определенной программы .

Поклонники компьютерных игр относятся к ней с уважением: она позволяет запрограммировать выбор оружия, что обеспечивает существенную экономию времени в игре.

Производители постоянно выдумывают что-то новое, добавляя разные кнопки, но ощутимой пользы это не приносит - большинство пользователей их все равно игнорируют.

Правда, есть отдельные «нестандартные» модели, которые с удовольствием используются узкими специалистами и геймерами. Например, мышь-трекбол (с двухмерным колесом прокрутки) или мини-джойстик (аналог игрового джойстика).

Современные мышки

Обычная двухкнопочная мышь обладает всеми необходимыми качествами: позволяет совершать множество манипуляций (щелчки, перетаскивания и прочие жесты), легко попадает в нужный пиксель монитора, пригодна для длительной работы и стоит сравнительно недорого.

Производители постоянно обновляют дизайн, стремясь сделать его более эргономичным, то есть максимально удобным для хвата. Так что подобрать оптимальную модель - и по техническим характеристикам, и по степени комфорта - сегодня может пользователь с любым уровнем запросов.

Несколько лет назад Apple представила сенсорную мышь . В ней нет кнопок - управление осуществляется при помощи жестов.

Еще одна новейшая разработка - так называемая гироскопическая мышь . Она распознает движение не только на поверхности, но и в воздухе - управлять ею можно размахивая кистью.

Правда, такая инновация далека от совершенства: рука при управлении ею быстро устает.

3.1. Как устроена мышь?

3.2. Драйверы мыши в MS-DOS

3.3. Прерывание для обслуживания мыши

3.1. Как устроена мышь? Оптико-механические мыши

Мышь - это небольшая коробочка с двумя или тремя клавишами, которая соединяется с компьютером тонким кабелем:

Рис. 2. Внешний вид мыши

Сверху на корпусе расположены кнопки. Обычно их две или три. Назначение этих кнопок полностью определяется программным обеспечением. Снизу виден шарик. Он обычно покрыт резиной для лучшего сцепления с поверхностью стола.

Конструктивно мышь представляет собой пластмассовую коробочку обтекаемой формы, в которой размещены:

Гибким кабелем мышь соединяется с системным блоком компьютера.

Рисунок 1

Рисунок 2

Рисунок 3

На рисунке 1 показано внутреннее устройство манипулятора "мышь". На рисунке отмечены следующие обязательные компоненты мыши: 1 - Фотоизлучатель 2 - Фотоприемник 3 - Шарик 4 - Вращающийся валик 5 - Прижимное колесико 6 - Кнопка 7 - Кабель 8 - Контроллер (специальная микросхема)

Принцип работы мыши заключается в следующем.

При нажатии кнопки мыши контроллер обрабатывает это событие и посылает в компьютер информацию о совершенном действии.

При перемещении мыши по поверхности шарик крутится, и его вращение передается двум взаимно перпендикулярным вращающимся валикам, которые генерируют сигналы перемещения "влево-вправо", "вверх-вниз". Каждый из двух вращающихся валиков имеет диск с прорезями. При вращении валика вращающийся диск с прорезями, пропускает (смотри рисунок 2) или задерживает (смотри рисунок 3) луч, который излучает фотоизлучатель и принимает фотоприемник. Сигнал от фотоприемника обрабатывается контроллером и отсылается в компьютер. Таким образом, механическое вращение шарика мыши преобразуется в электрический сигнал ее перемещения, а вращение валиков воспринимается и передается в компьютер.

Программное обеспечение свяжет перемещения мыши по поверхности стола с перемещениями, например, курсора по поверхности экрана. Перемещая мышь по столу (и, соответственно, курсор по экрану), вы можете указывать (выбирать) различные объекты, находящиеся на экране.

Если вы откроете корпус мыши, вы увидите простой механизм, состоящий из шарика, двух осей с резиновыми валиками, двух дисков с отверстиями и четырех фотодатчиков:

Рис. 3. Внутреннее устройство мыши

Когда вы перемещаете мышь по поверхности стола, вращение шарика передается через резиновые валики двум дискам с отверстиями. Около каждого диска расположены фотодатчики (по два на диск). Они фиксируют направление вращения и угол поворота дисков. Во время движения мыши фотодатчики вырабатывают импульсы, которые передаются в компьютер. Количество этих импульсов линейно зависит от величины перемещения мыши.

В настоящее время изготовители компьютерного оборудования предлагают большой выбор мышей разного типа. Мыши отличаются не только внешним видом и количеством клавишей, но также и способом подключения к компьютеру, мыши могут иметь различную точность и различный программный интерфейс.

Можно выделить два наиболее часто используемых способа подключения мыши к компьютеру:

    через последовательный порт (COM1, COM2);

    через специальный адаптер, который вставляется в слот расширения материнской платы компьютера.

Что касается программного интерфейса, то можно выделить два типа:

    трехкнопочная мышь системы Mouse Systems

    двухкнопочная мышь Microsoft

Некоторые мыши могут эмулировать оба типа. Эмулируемый тип зависит от состояния переключателя, находящегося на нижней крышке корпуса мыши или от того, была ли нажата клавиша мыши во время включения питания компьютера.

Компьютерной мыши берет свое начало 9 декабря 1968 года, когда она была представлена на выставке интерактивных устройств в Калифорнии. Патент на этот гаджет получил Дуглас Энгельбарт 2 годами позже. Первым компьютером, в набор которого включалась мышь, был мини-компьютер Xerox 8010 Star Information System, представленный в 1981 году. Мышь Xerox имела три кнопки и стоила 400 долларов, что эквивалентно нынешним 1000 долларам. В 1983 году Apple выпустила свою собственную однокнопочную мышь для компьютера Lisa, стоимость которой удалось уменьшить в 16 раз. Широкую известность компьютерная мышь приобрела благодаря использованию в компьютерах Macintosh. Как же работает современная компьютерная мышь — об этом в сегодняшнем выпуске.

Современные мыши бывают двух типов — оптические и лазерные. Вне зависимости от типа мышь воспринимает своё перемещение в рабочей плоскости (например, на участке поверхности стола) и передаёт эту информацию компьютеру. Программа, запущенная на компьютере, в ответ на перемещение мыши производит на экране действие, отвечающее направлению и расстоянию этого перемещения.


В современных оптических мышах используется так называемая технология оптической корреляции. C помощью светодиода и системы фокусирующих его свет линз под мышью подсвечивается участок поверхности. Отраженный от этой поверхности свет собирается другой линзой и попадает на приемный сенсор микросхемы - процессор обработки изображений. Он, в свою очередь, делает снимки поверхности под мышью с высокой частотой (как правило, более 1 кГц) и обрабатывает их, покадрово сравнивая изображения. На основании анализа последовательных снимков, которые представляют собой квадратную матрицу из пикселей разной яркости, интегрированный процессор высчитывает результирующие показатели, определяя направление перемещения мыши.


Поверхность, по которой перемещается мышь, обычно имеет микронеровности. Освещаясь ярким светодиодом, установленным под небольшим углом к поверхности, микронеровности отбрасывают тени, которые и фиксируются сенсором. В оптических мышах обычно применяются красные светодиоды в силу своей дешевизны. Кроме того, именно к красному цвету более чувствительны кремниевые фотоприёмники. Недостаток оптических мышей — это повышенная потребляемая мощность по сравнению лазерными устройствами.


В лазерных мышах для подсветки поверхности используется не светодиод, а инфракрасный лазерный диод, подсвечивающий поверхность. Из-за когерентности (то есть согласованности) лазерного излучения с фокусировкой на рабочей поверхности, последняя осуществляется гораздо точнее. К тому же для работы лазерной мыши требуются куда меньшие по размеру микронеровности, чем необходимо для оптической мыши.

Лазерная мышь впервые вышла в свет в 1998 году, будучи произведённой компанией Sun Microsystems. Однако тогда она не получила широкого распространения. В отличие от оптической мыши лазерная мышь способна работать на зеркальных и прозрачных поверхностях, таких как стекло, что является существенным преимуществом.

Устройство и принцип работы оптической мыши

Сегодня оптической мышью уже никого не удивишь. Но лет десять назад, когда только появилось первое поколение оптических "грызунов", не многие могли похвастать таким диковинным манипулятором. А между тем, возможность перемещать курсор с помощью "грызуна" с красным светодиодом в "брюшке" была еще одним шагом вперед в компьютерных технологиях.

Вообще-то в первых оптических мышах было два светодиода, и один из них излучал свет в красном диапазоне, а другой - в инфракрасном. Соответственно было и два фотодиода, которые работали "в паре" с вышеозначенными светодиодами. Для такой мыши был необходим специальный коврик с поверхностью из специального светоотражающего материала, на который наносилась мелкая сетка из синих и перпендикулярных им черных линий. Синие линии поглощали свет красного светодиода, а черные - инфракрасного.

Таким образом, один фотодиод "замечал" проход над синими линиями коврика, а другой - над черными. В момент прохода над линией фотодиод генерировал соответствующий электрический импульс. Контроллер мыши, подсчитывая импульсы, определял направление и величину перемещения.

Можно сказать, что коврик выполнял функцию, аналогичную той, которую выполняет вся механическая часть в оптико-механической мышке (обычная мышь с шариком, которую многие, наверное, не раз разбирали).

К достоинствам таких мышей можно отнести отсутствие движущихся и инерционных частей, надежность в работе, точность позиционирования. А к недостаткам - коврик, который требовал постоянного ухода и чистки, ну и, как всегда (куда ж без денег), - высокую стоимость. К тому же, при утрате или повреждении коврика мышь утрачивала свою работоспособность. Но в 1999 году фирмой Agilent Technologies была разработана своя технология оптической навигации, для которой коврик и вовсе не требовался. И так как на сегодняшний момент фирмой Agilent выпущено более 75 миллионов сенсоров различных модификаций для оптических мышей, то можно предположить, что данная технология пришлась ко двору как производителям, так и пользователям. К тому же, вышеозначенная фирма выпускает не только оптические сенсоры, но еще и практически все необходимые компоненты для сбора оптической мыши (этакий наборчик "сделай сам" (см. рис.1)), что делает доступным производство оптических мышей даже для небольших (так и хочется добавить "китайских") компаний. На рис.1 показаны два варианта линзы и зажима. Но какой бы из них ни предпочел производитель, принципиально на работу оптической системы это не влияет.

Суть данной технологии заключается в следующем: оптический сенсор последовательно считывает изображения поверхности (кадры), а затем математически определяет направление и величину перемещения.

красный

светодиод

зажим для светодиода

Полная оптическая система состоит из четырех компонентов: оптического сенсора, линзы, красного светодиода и зажима для светодиода. Как она выглядит в собранном виде, можно посмотреть на рис.2.

Оптический

Оптический сенсор включает в себя три функциональных блока: систему считывания изображения (IAS); цифровой сигнальный процессор(DPS); последовательный интерфейс передачи данных.

Конструктивно же оптический сенсор представляет собой микросхему с шестнадцатью ножками (хотя есть вариант и с восемью), на нижней части которой (со стороны ножек) расположен объектив.

За объективом расположена монохромная КМОП (CMOS) камера, которая и фотографирует небольшой участок поверхности площадью около квадратного миллиметра. Кадр поверхности разбивается на маленькие участки (квадраты). Для каждого такого участка вычисляется усредненное значение яркости. Диапазон присваиваемых значений - от 0 до 63, где 0 присваивается черному участку, а 63

Белому. Таким образом, получается мозаичное изображение, состоящее из квадратов различной яркости. Вот один такой квадрат, т.е. элемент изображения, и является точкой привязки, а точнее сказать, одним отсчетом (см. рис.3). И разрешающая способность оптической мыши определяется в отсчетах на дюйм (counts per inch), т.е. cpi, а не dpi, как у обычных мышей. Фирма Agilent выпускает сенсоры с разрешением как 400, так и 800 cpi, причем модели с разрешением 800 cpi могут быть запрограммированы на работу с разрешением 400 cpi. К слову сказать, некоторые фирмы в технических характеристиках своих оптических мышей заявляют разрешение в 420 или 500 cpi. Но просматривая техническую документацию на различные сенсоры, таких характеристик я не встречал. А в то, что какая-нибудь небольшая китайская компания выпускает сенсоры собственной разработки, когда такой признанный авторитет в этой области "мышестроения", как Logitech, покупает их у Agilent, очень слабо верится. И если уж я упомянул Logitech, то хочу добавить, что большинство своих моделей, за исключением самых дешевых, она снабжает сенсорами с разрешением в 800 cpi.

Но вернемся назад к технологии. Помня о том, что сенсор фотографирует очень небольшой участок поверхности, а курсор по экрану должен двигаться плавно и без запаздывания, а для этого последовательно считываемые кадры поверхности должны накладываться друг на друга с небольшим смещением, поверхность фотографируется с очень большой скоростью - 1500 снимков в секунду. Это позволяет перемещать мышь со скоростью до 12 дюймов (30 сантиметров) в секунду. Также существуют варианты сенсоров, которые фотографируют поверхность со скоростью в 2000 или 2300 снимков в секунду и позволяют перемещать мышь со скоростью в 14 дюймов (35 см) в секунду. Причем фирма Microsoft заявляет, что в ее последних разработках находятся сенсоры со скоростью съемки в 6000 кадров в секунду. Опять же, технического описания на

такой сенсор я не видел, но думаю, что в данном случае такое вполне возможно. Все вышерассмотренное относится к системе считывания изображения. Далее отснятые кадры обрабатываются цифровым сигнальным процессором по специальному, естественно, запатентованному алгоритму. Сравнивая полученные кадры, процессор определяет величину и направление перемещения мыши (см. рис.3), после чего преобразует эти данные в координаты.

Так как кварцуются сенсоры в большинстве своем генератором с частотой 18 МГц (есть варианты на 24 МГц), то можно предположить, что мощность цифрового процессора составляет 18 миллионов операций в секунду. Затем вычисленные координаты при помощи последовательного интерфейса передаются в компьютер. Первые модели сенсоров умели "общаться" с компьютером по интерфейсу PS/2, а для работы по интерфейсу USB требовался дополнительный контроллер. Кстати, частота посылки координат по умолчанию при использовании интерфейса USB - 125 раз в секунду, PS/2 - 100 раз. Но через последовательный порт могут устанавливаться некоторые параметры самого сенсора - в частности, разрешающая способность и частота посылки координат.

Теперь рассмотрим назначение других компонентов оптической системы. Так как под мышкой темно даже днем, то поверхность, которую фотографирует сенсор, необходимо подсвечивать. Камера сенсора настроена на восприятие света в красном спектре излучения (l= 639 nm). Поэтому и используется красный светодиод, главная задача которого - даже минимальным количеством излучаемого света обеспечивать работу сенсора на всей рабочей поверхности. Чем выше яркость освещения, тем на большем количестве поверхностей будет работать сенсор.

Чтобы обеспечить равномерное освещение поверхности, свет от светодиода проходит по световоду и рассеивается линзой. Через другую линзу сенсор считывает изображение поверхности. Конструктивно две линзы и световод выполнены как одна деталь и называются один словом "линза".

Кроме функции рассеивания и фокусирования света, линза выполняет еще одну важную функцию - защиту сенсора от разряда электростатического напряжения. Понятно, что линза должна располагаться на строго определенном расстоянии от рабочей поверхности и от сенсора. Поэтому печатная плата (PCB) и опорная поверхность (base plate), на которые устанавливаются элементы оптической системы, должны иметь строго определенные параметры, в том числе и по толщине. Ну и последний элемент оптической системы - это защелка. Служит она для фиксации элементов оптической системы относительно друг друга.

На этом можно оставить оптическую систему в покое и поговорить о поверхности, на которой должна работать данная система. Так как сенсор использует микроскопические особенности поверхности, то чем больше таких особенностей, тем лучше. К таковым можно отнести поверхности с хорошей текстурой (чем обладает любая ткань) и узорчатыми особенностями. Да и на обычной белой бумаге оптические мыши работают совсем неплохо. А вот с любой отражающей поверхностью сенсор работает плохо, будь то зеркало, стекло либо просто пластиковая поверхность коврика. Также к числу "плохих" поверхностей относятся полутоновые поверхности и коврики с трехмерным изображением.

Но как бы то ни было, такие положительные моменты, как отсутствие движущихся частей, точное позиционирование, плавные и легкие движения делают оптическую мышь довольно привлекательным объектом для покупки.

И если взять мыши в ценовой категории до 20 у.е., то, скорее всего, они будут иметь один и тот же тип сенсора и, соответственно, идентичные характеристики. В этом случае стоит обратить внимание на эргономику изделия, наличие

дополнительных кнопок, качество материалов и имя производителя. К тому же, важным моментом для оптических мышей является качество сборки. И если название фирмы вы слышите в первый раз, то стоит задуматься, брать такую мышь или нет. Во всяком случае, перед покупкой совсем не помешает почитать обзоры, посвященные конкретным моделям.

Вот, пожалуй, и все. Всего хорошего.

Игорь Масловский, [email protected]

Световод приподнят над микросхемой

Линза и рассеиватель

Вид на объективную часть оптической мыши

Вид снизу на объективную часть в собранном состоянии

В предыдущих статьях мы начали рассказывать вам о компьютерной периферии. Начали мы с клавиатуры. Следующая на очереди мышка. В статье расскажем вам о том что такое компьютерная мышь, какие бывают их виды и основные характеристики.

Компьютерная мышь – неотъемлемая часть компьютера. Она дает возможность пользователю управлять курсором, что отображается на экране, при помощи движения самой мыши по поверхности стола.

Если говорить проще, компьютерная мышь – средство, при помощи которого мы можем выбирать объекты, находящиеся на экране компьютера, и управлять ими. К таким действиям относятся: копирование, открытие документов, выделение и текста и многое другое. При пользовании компьютером человек практически не выпускает устройство из рук, что доказывает важность данного устройства.

Из чего состоит компьютерная мышь

Мышки для компьютера, если не обращать внимания на особенности некоторых видов, состоят из колеса прокрутки, с помощью которого можно перемещаться (прокручивать информацию) на экране компьютера, и клавиш, что используются для таких действий как, например: активизировать контекстное меню, активизировать или открыть объект, захватить и переместить его и т.п.

На нижней стороне мышки располагается датчик отслеживания движения манипулятора по поверхности. В зависимости от вида (будут рассмотрены ниже) это может быть шарик (практически не используется в наше время) либо лазерный сканер.

Также мышь имеет либо шнур (с USB или PS/2 интерфейсом), которым она подключается к ПК, либо, в случае с беспроводными мышками, отсек для установки батареек.

Виды компьютерных мышек

Компьютерная мышка прошла долгий путь эволюции и на сегодня нам известны следующие их виды:

  • Механические — тип мышек, практически не используемый сегодня. В качестве датчика отслеживания перемещения здесь используется устройство из обрезиненного стального шарика, роликов и датчиков угла поворота. Во время движения мыши стальной шарик крутится, к нему прижимаются ролики, которые фиксируют это и передают информацию датчиками угла поворота. Датчики же, в свою очередь, преобразуют полученные данные в электрические сигналы. Минусами таких мышек являются относительно большой размер и необходимость периодической чистки для хорошей работы. К ней так же обязательно нужен коврик, без него манипулятором работать будет невозможно;
  • Оптические — отличаются от механических тем, что вместо шарика, для отслеживания перемещения, используется «камера» которая с частотой несколько сотен кадров в секунду фотографирует поверхность, по которой мышь двигается. Анализируя сделанные изображения, происходит перемещение курсора на экране. Для того, чтобы лучше выделить все неровности поверхности, а следовательно улучшить качество позиционирования мыши, используется яркий светодиод который устанавливается в устройство под небольшим углом;
  • Лазерные – отличная альтернатива предыдущему виду мышек. Принцип работы можно назвать идентичным оптическим, только в этом типе вместо светодиода для подсветки используется инфракрасный лазерный диод. Благодаря данному решению возрастает точность позиционирования устройства. Плюсом также можно назвать то, что для корректной работы лазерной мыши практически не важен тип поверхности;
  • Сенсорные — здесь название говорит само за себя. В этой мышке нет ни кнопок, ни колеса прокручивания, все команды можно задавать с помощью жестов. Сенсорные мыши – это новейший вид, который отличается удобностью в использовании и изумительным внешним видом;
  • Индукционные — мыши, которые работают за счет употребления индукционной энергии. В использовании обязателен коврик, служащий, так называемым, графическим планшетом;
  • Трекбол-мыши — устройства без кнопок, для управления которым используется перевернутый шарик под названием — трекбол;
  • Гироскопичечкие — позиционирование курсора такой мышью происходит благодаря гироскопу. Для корректной работы, этим мышкам поверхность не важна они считывают информацию о движении не только с нее, но с пространства.

Еще одним способом классификации компьютерных мышек является разделения их по способу подключения. Так мышки бывают:

  • Проводными — подключаться к ПК при помощи провода по USB или PS/2;
  • Беспроводными — подключение происходит при помощи протокола Bluetooth.

Характеристики компьютерных мышек

Основные характеристики компьютерных мышек:

  1. Тип (вид) . Как уже говорилось выше, это влияет на работу самой мыши, удобство и практичность. Каждый пользователь выбирает индивидуально предмет пользования, так как в основе лежит предназначения: есть те, кто активно играет в компьютерные игры – для него игровая мышь подойдет идеально, поскольку она оснащена дополнительными клавишами для удобной навигации. Другим же будет достаточно обычной лазерной, с помощью которой они будут выполнять все необходимые, для среднестатистического пользователя, операции.
  2. Размер и форма . Эти характеристики в первую очередь влияют на её практичность в использовании: выбор, в большинстве случаев, определяется размером руки – девушки любят маленькие и красивые мышки, мужчины привыкли чувствовать в своих руках увесистую и довольно большую, по размерам, мышь, которой будет удобно управлять.
  3. Чувствительность . Этот критерий влияет на точность перемещения курсора на экране. Более опытные пользователи уделяют чувствительности большое внимание, так как, помимо стандартных настроек, в некоторых видах их деятельности нужна максимальная точность и сбалансированность движений, что может повлиять на результат работы.

Выводы

На сегодняшний день большое количество представленных видов компьютерных мышек дает возможность каждому человеку сделать взвешенный выбор, исходя из индивидуальных требований. Надеюсь что статья помогла вам узнать много нового о таком незаменимом предмете компьютерного пользователя, как мышка.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то