Сколько служат солнечные батареи. Сколько служат солнечные батареи и как продлить этот срок

Срок службы солнечных батарей

Солнечные батареи были испытаны в полевых условиях на многих установках. Практика показала, что срок службы солнечных батарей превышает 20 лет. Фотоэлектрические станции, работающие в Европе и США около 25 лет, показали снижение мощности модулей примерно на 10%. Таким образом, можно говорить о реальном сроке службы солнечных монокристаллических модулей 30 и более лет. Поликристаллические модули обычно работают 20 и более лет. Модули из аморфного кремния (тонкопленочные, или гибкие) имеют срок службы от 7 (первое поколение тонкопленочных технологий) до 20 (второе поколение тонкопленочных технологий) лет. Более того, тонкопленочные модули обычно теряют от 10 до 40% мощности в первые 2 года эксплуатации. Поэтому, около 90% рынка фотоэлектрических модулей в настоящее время составляют кристаллические кремниевые модули.

Другие компоненты системы имеют различные сроки службы: аккумуляторные батареи имеют срок службы от 2 до 15 лет, а силовая электроника – от 5 до 20 лет.

Многие производители дают гарантию на свои модули на период от 10 до 25 лет. При этом они гарантируют, что мощность модулей снизится не более, чем на 10%. Гарантия на механические повреждения дается обычно на срок от 1 до 5 лет.

Наиболее богатым опытом эксплуатации обладают кристаллические модули. Их начали устанавливать еще 50-х годах прошлого века, а массовое использование началось в конце 1970-х. Поэтому именно о долговечности таких модулей уже можно делать какие-то выводы.

Расчетный срок службы кристаллических модулей обычно 30 лет. Производители делают ускоренные тесты по эксплуатации модуля для того, чтобы оценить его реальный срок службы. Сами солнечные элементы, используемые в солнечных модулях, имеют практически неограниченный срок службы и показывают отсутствие деградации по прошествии десятков лет эксплуатации. Однако, выработка модулей со временем падает. Это результат 2 основных факторов – постепенное разрушение пленки, используемой для герметизации модуля (обычно используется этиленвинилацетатная пленка – ethylene vinyl acetate; EVA) и разрушение задней поверхности модуля (обычно поливинилфосфатная пленка), а также постепенное замутнение прослойки из EVA пленки, расположенной между стеклом и солнечными элементами.

Герметик модуля защищает солнечные элементы и внутренние электрические соединения от воздействия влаги. Так как практически невозможно полностью защитить элементы от влаги, модули на самом деле «дышат», но это крайне трудно заметить. Влага, попавшая внутрь, выводится наружу днем, когда температура модуля возрастает. Солнечный свет постепенно разрушает герметизирующие элементы за счет ультрафиолетового излучения, и они становятся менее эластичными и более податливыми на механические воздействия. Со временем, это приводит к ухудшению защиты модуля от влаги. Влага, попавшая внутрь модуля, ведет к коррозии электрических соединений, увеличению сопротивления в месте коррозии, перегреву и разрушению контакта или к уменьшению выходного напряжения модуля.

Второй фактор, уменьшающий выработку модуля – это постепенное уменьшение прозрачности пленки между стеклом и элементами. Это уменьшение не заметно невооруженным глазом, но ведет к снижению мощности модуля за счет того, что меньше света попадает на солнечные элементы.

Максимальное ухудшение обычно гарантируется производителями на уровне не более 20% за 25 лет. Однако измерения, проведенные на реально работающих с 1980 годов модулей показывают, что их выработка уменьшилась не более, чем на 10%. Очень многие из этих модулей и до сих пор работают с заявленными при производстве параметрами (т.е. нет деградации). Поэтому можно смело говорить, что модули будут работать не менее 20 лет, и с высокой вероятностью обеспечат высокие показатели и через 30 лет с момента начала работы.

Перед установкой автономного энергоснабжения возникают обычно два вопроса: «Сколько прослужит система?» и «За какой период она окупится?». Ведь именно от ответов на эти вопросы и зависит целесообразность расходов на приобретение и монтаж автономного контура. Срок службы солнечных панелей различен. Он зависит прежде всего от типа самих панелей.

Сроки службы

Как показали практические испытания, ресурс гелиопанелей составляет не менее 20 лет. После определенного количества времени (15-20 лет, в зависимости от типа и особенностей фотоячеек) наблюдается некоторое снижение мощности, которое и продолжается в дальнейшем. Как правило, батареи на монокристаллах работают до 30 лет, на поликристаллах – 20-25 лет. Тонкопленочные батареи последних поколение также служат порядка 20 лет.

Стандартная гарантия для большинства производителей солнечных панелей варьируется в достаточно значительных пределах – от 10 до 25 лет. Связан такой разброс с особенностями самих фотоячеек, их типом (поли-, моно-), классом («A», «B», «C»), качеством защитного лицевого покрытия и т.д.

Производители гарантируют, что в течение этого срока мощность их продукции снизится не более, чем на 10%. Падение мощности на более значительную величину чревато критическим снижением выработки всей системы, поскольку для солнечных электростанций очень важен каждый ватт произведенной энергии. Батареи из аморфного кремния, как правило, теряют 10-40% мощности в первые сезоны, после чего их выработка «замирает» на этом уровне.

Что влияет на срок службы

Стандартный расчетный срок использования кристаллических солнечных панелей – 30 лет. Чтобы выяснить скорость реального старения элементов, проводятся целые серии разного рода тестов. Они показывают, что сами фотоячейки имеют очень большой ресурс, их деградация после нескольких десятилетий использования минимальна.
Падение же производительности солнечных батарей связано с тремя факторами:

  • разрушение герметизирующей модуль пленки;
  • замутнение пленочной прослойки между фотоячейками и защитным стеклом;
  • разрушение тыльной пленки солнечной батареи.

Для герметизации солнечных панелей (равно как и в качестве пленочной прослойки) применяется пленка EVA (ethylene vinyl acetate, так называемая «этиленвинилацетатная»). Тыльная же сторона панели обычно представляет собой поливинилфосфатную пленку.

Такая пленочная защита необходима для предохранения фотоячеек и паяных соединений панели от действий влаги. Под действием УФ-лучей солнечного спектра пленки постепенно разрушаются, они теряют свою эластичность и легче поддаются механическим воздействиям. Как следствие, ухудшается герметичность и влага начинает активнее просачиваться внутрь панели.

Кроме того, EVA-пленка между стеклом и фотоячейками теряет и свою оптическую прозрачность, что приводит к уменьшению поглощения солнечных лучей. А из-за микрокапель влаги паяные соединения постепенно начинают корродировать, что приводит к увеличению сопротивления контакта, его перегреву и последующему разрушению.

Как правило, производители гарантируют ухудшение работы своих солнечных батарей не более, чем на 20% за 25 лет. Однако это относится только к зарекомендовавшим себя фирмам, которые тщательно следят за качеством продукции. Менее добросовестные компании при сборке панелей экономят на всем, чтобы выставить как можно более низкую итоговую цену продукта.

Такая экономия приводит к тому, что для герметизации используются некачественные (или неподходящие для специфичных условий солнечных батарей) материалы. Как следствие, разрушение контактов может наблюдаться уже на следующий сезон, что приводит к резкому падению мощности (вплоть до 30-40%). Особенно часто подобное явление можно наблюдать на дешевых садовых светильниках с фотобатареями.

Дополнительные факторы

На срок службы влияет и качество самой EVA-пленки, равно как и защитного ламинирующего покрытия. Некачественное покрытие дает ощутимую усадку уже в первый же сезон. Это приводит к практически полной разгерметизации панели, резкому снижению КПД и выходу изделия из строя.

Еще один аспект – толщина соединительных проводников и токопроводящих шин. Она должна быть достаточной для пропускания токов именно той мощности, которая заявлена в паспорте солнечной панели. Причем толщина шины должна быть больше, чем у проводников, соединяющих между собой фотоячейки. Если шина будет слишком тонкой (что нередко встречается в дешевых панелях малоизвестных фирм), то в скором времени она выйдет из строя.

Также влияет на срок работы и качество паяных соединений. Плохо выполненная пайка разрушается очень быстро и без воздействия коррозии, так как такие контакты сами по себе сильно перегреваются. Поэтому надежность паяных соединений – непременное условие длительной работоспособности.

Период окупаемости

Сроки окупаемости солнечных панелей зависят от нескольких факторов:

  • Тип оборудования (поли- или моноячейки, одно- или многослойная структура солнечной батареи). От этого зависят первоначальные расходы, так как стоимость солнечных панелей разных типов варьируется довольно сильно.
  • Количество устанавливаемых панелей. Именно поэтому очень важно заранее провести точный расчет всей системы.
  • Географическая широта, точнее, величина инсоляции: чем больше солнца попадает на рабочую поверхность модуля, тем больше он вырабатывает энергии и тем быстрее «отбивает» затраты.
  • Расценки на энергоресурсы в регионе. От стоимости киловатт-часа электроэнергии будет зависеть разница в стоимости выработанной солнцем энергии и энергии, полученной из центральной электросети. Иными словами, насколько выгоднее вырабатывать «солнечное электричество».

В среднем для частного дома сроки окупаемости составляют 2,5-3,5 года в среднеевропейских странах и 1,5-2 года в южноевропейских. Для России этот показатель варьируется в средних пределах от 2-х до 5-ти лет. Однако нужно помнить, что с совершенствованием технологий изготовления повышается КПД (энерговыработка) панелей, а значит, постепенно снижается и срок окупаемости.

Как дополнительный и альтернативный источник энергии, солнечные батареи достаточно активно применяются не только в промышленных, но и бытовых условиях. Но прежде чем установить себе такой источник электроэнергии, покупателю важно узнать, как подобрать оптимальные по характеристикам и мощности солнечные батареи для дома, ведь цена готовых комплектов варьируется в достаточно большом диапазоне.

Применение солнечных батарей в условиях средней полосы – здесь тоже возможно использование бесплатной энергии

Где чаще всего используются солнечные батареи

Сфера применения солнечных батарей огромна. Уже сейчас их с успехом используют для электроснабжения частных и многоквартирных домов, хозяйств, в том числе для освещения и обогрева теплиц, построек, освещения придомовой территории, питания приборов.

Чаще всего про автономное электроснабжение задумываются в следующих случаях:

Если местность не электрифицирована, солнечные панели для частного дома обойдутся намного дешевле, чем использование жидкотопливных генераторов.

В сельской местности нередко отключают электричество, и люди буквально остаются без света. Включив автономное электроснабжение, можно жить в привычном комфорте длительное время, тем более, что в комплекте с солнечными панелями всегда идет аккумулятор.

В многоквартирных домах солнечные модули также применяются в качестве резервных, а также существуют проекты, предусматривающие использование солнечной энергии для горячего водоснабжения.

Как правило, в документах на оборудование, указывается срок годности от 20 до 25 или даже 30 лет. Однако многие устройства продолжают функционировать и по прошествии указанного производителями периода. Например, первая в мире солнечная батарея работает уже свыше 60 лет, а за эти годы технология производства была существенно усовершенствована.

Прототип солнечной батареи был разработан еще в конце XIX века

Явно можно выделить только один недостаток – при постоянной эксплуатации мощность оборудования снижается, тем не менее эти показатели незначительны: за 10 лет не больше чем на 10%.

Предупреждать физические повреждения, такие как падение деревьев, срыв ветром и царапин на чувствительных элементах. От последних зависит эффективность работы устройства.

Регулярно производить уход: обслуживание и очистку.

При необходимости установить ветрозаградительные конструкции.

Помимо модулей в систему входят следующие составляющие: аккумуляторные батареи и силовая электроника. Срок службы первых устройств составляет от 2 до 15 лет, вторых – от 5 до 20 лет, в зависимости от характеристик, интенсивности эксплуатации и бережного ухода.

Общие характеристики и доступность приобретения

Оборудование не наносит вреда окружающей среде и обеспечивает стабильное питание без скачков напряжения. И, главное, поставляет бесплатную энергию: за которую не приходят коммунальные счета.

Внешний вид солнечных панелей мало изменился, после их изобретения, чего не скажешь о внутренней «начинке»

Солнечная модуль преобразовывает свет в электрическую энергию, генерируя постоянный ток. Площадь панелей может достигать нескольких метров. Когда необходимо увеличить мощность системы, увеличивают количество модулей. Их эффективность зависит от интенсивности солнечного света и угла падения лучей: от местоположения, сезона, климатических условий и времени суток. Чтобы грамотно учитывать все эти нюансы, монтаж должны выполнять профессионалы.

Монокристаллические. Состоят из силиконовых ячеек, преобразующих солнечную энергию. Отличаются компактными размерами. По своей производительности являются самыми эффективными (эффективность до 22 %), что сказывается их цене – это самый дорогостоящий вид солнечных батарей.

Поликристаллические. В них используется поликристаллический кремний. Они не так эффективны (эффективность до 18%), как монокристаллические фотоэлементы. Зато их стоимость существенно ниже, поэтому они доступны широким слоям населения.

Аморфные. Имеют тонкопленочные фотоэлементы на основе кремния. Уступают моно и поликристаллам по выработке энергии, но и стоят дешевле. Их преимуществом является способность функционировать при рассеянном и даже слабом освещении.

Поликристаллическая солнечная панель

В систему входят также следующие компоненты:

Инвертор, который преобразует постоянный ток в переменный.

Аккумуляторная батарея. Она не только накапливает энергию, но и нивелирует перепады напряжения, когда меняется уровень освещенности.

Контроллер зарядного напряжения аккумулятора, режима зарядки, температуры и других параметров.

В магазинах можно приобрести как отдельные компоненты, так и целые системы. При этом мощность устройств определяется исходя из конкретных потребностей.

Функционирование, виды преобразователей и их сравнительная энергоэффективность

Преобразователи или инверторы являются ключевыми компонентами солнечных батарей. Они трансформируют постоянный ток, вырабатываемый модулем в переменный напряжением 220 В, который необходим для работы электрических приборов. Инверторы имеют мощность от 250 до 8000 Вт. При покупке рекомендуют учитывать самую высокую нагрузку на сеть и соотносить напряжение и мощность. Оптимальными считаются параметры: 12 вольт и 600 ватт, 24 Вольт при 600-1500 Ватт, 48 Вольт, если мощность больше 1500 Ватт.

Инвертор, на принципиальной схеме работы солнечных батарей

Автономный. Перед тем как выбрать инвертор, надо определить, какие приборы будут от него питаться, и подсчитать их общую максимальную мощность в единицу времени. Рекомендуется взять мощность инвертора несколько больше. Некоторые бытовые электроприборы при включении создают резкое увеличение напряжения, из-за которого устройство может выйти из строя.

Синхронный. Они накапливают энергию, а излишки передают в электрическую сеть. В случае недостатка электричества, выработанного системой, преобразователь «позаимствует» его из общей сети. Применение модели синхронного типа позволит избежать перебоя в энергоснабжении.

Многофункциональные устройства объединили в себе преимущества первого и второго вида.

В зависимости от формы сигнала напряжения на выходе существует несколько видов преобразователей, которые различаются применением и стоимостью:

С синусоидальным сигналом. Создают ток высокого качества, что сказывается на их стоимости. От них работают крупные бытовые приборы: холодильники, котлы, кондиционеры.

Прямоугольным. К этим недорогим инверторам подключают осветительные приборы. Большинство домашних бытовых приборов с ними несовместимы.

Псевдосинусоидальным. Их преимуществом является возможность подключения практически всей домашней техники. Но качество сигнала снижено по сравнению с первым видом, поэтому они стоят дешевле.

Ребристая форма инвертору нужна для максимально эффективного охлаждения

Стоимость комплекта и основные технические характеристики, срок окупаемости

Цены на готовые комплекты в основном варьируются от 30 000 до 2 000 000 руб. Они зависят от составляющих их устройств (от вида батарей, количества приборов, производителя и характеристик). Можно встретить бюджетные варианты стоимостью от 10 500 руб. В эконом-набор входит панель, контроллер заряда, коннектор.

В стандартные комплекты включают:

* Предусмотрены в расширенной комплектации.

Стандартный комплект оборудования

Технические характеристики указывают в руководстве к применению:

Мощность и размеры панелей. Чем больше нужна мощность, тем выгоднее покупать батареи больших размеров.

Температурный коэффициент показывает насколько температура влияет на мощность, напряжение и ток.

Принцип работы солнечной электростанции в домашних условиях

Солнечная электростанция – это система состоящая из панелей, инвертора, аккумулятора и контроллера. Солнечная панель трансформирует лучистую энергию в электричество (как было сказано выше). Постоянный ток попадает в контроллер, который распределяет ток по потребителям (например, компьютер или освещение). Инвертор преобразовывает постоянный ток в переменный и обеспечивает работу большинства электрических бытовых приборов. В аккумуляторе накапливается энергия, которая можно расходовать в темное время суток.

Как солнечная энергия используется для получения тепла

Гелиосистемы применяются для нагревания воды и отопления жилища. Они могут давать тепло (по желанию владельца) даже тогда, когда отопительный сезон закончится, и обеспечивать дом горячей водой бесплатно. Простейшее устройство представляет собой металлические панели, которые устанавливают на крыше дома. Они аккумулируют энергию и согревают воду, которая циркулирует по скрытым под ними трубам. Функционирование всех гелиосистем основано на этом принципе, несмотря на то, что конструктивно они могут отличаться друг от друга.

Солнечные коллекторы состоят из:

По типу конструкции различают плоские и вакуумные коллекторы. У первых дно покрыто теплоизоляционным материалом, а жидкость циркулирует по стеклянным трубам. Вакуумные коллекторы отличаются большой эффективностью, потому что теплопотери в них сведены к минимуму. Этот тип коллектора обеспечивает не только отопление солнечными батареями частного дома – его удобно использовать для систем горячего водоснабжения и подогрева бассейнов.

Принцип действия солнечного коллектора

Самой распространенной в России является продукция китайских производителей, благодаря относительной дешевизне, по сравнению с продукцией, произведенной в других странах. К примеру, солнечные батареи из Китая почти вдвое ниже по цене, чем немецкие.

Чаще всего на прилавках встречается продукция компаний Yingli Green Energy и Suntech Power Ко. Также популярностью пользуются панели HiminSolar (Китай). Их солнечные батареи производят электроэнергию даже в дождливую погоду.

Производство солнечных батарей налажено и у отечественного производителя. Этим занимаются такие компании:

ООО «Хевел» в Новочебоксарске;

«Телеком-СТВ» в Зеленограде;

«Sun Shines» (ООО «Автономные Системы Освещения») в Москве;

ОАО «Рязанский завод металлокерамических приборов»;

ЗАО «Термотрон-завод» и другие.

По стоимости всегда можно найти подходящий вариант. Например в Москве можно заказать и купить уже готовые комплекты солнечных батарей – по цене от 21 000 до 2 000 000 руб. Стоимость зависит от комплектации и мощности устройств.

Солнечные батареи не всегда плоские – есть ряд моделей, которые фокусируют свет в одной точке

Этапы монтажа батарей

Для установки панелей выбирается самое освещенное место – чаще всего это крыши и стены зданий. Чтобы устройство функционировало максимально эффективно, панели монтируются под определенным углом к горизонту. Учитывается также уровень затемненности территории: окружающие предметы, которые могут создавать тень (постройки, деревья и т. п.)

Устанавливаются панели при помощи специальных крепежных систем.

Затем модули соединяются с аккумулятором, контроллером и инвертором, и производится наладка всей системы.

Для эффективного функционирования оборудования и продолжительного срока службы необходимым условием является правильно выполненный монтаж, который под силу только опытным специалистам.

Несмотря на сложность подключения и калибровки, срок работ невелик – при наличии соответствующих инструментов, грамотные монтажники затратят на все про все примерно полдня.

Для монтажа системы всегда разрабатывается персональный проект, который учитывает все особенности ситуации: как будет выполняться установка солнечных батарей на крыше дома, цена и сроки. В зависимости от вида и объема работ, все проекты рассчитываются в индивидуальном порядке. Клиент принимает работу и получает на нее гарантию.

Установка солнечных батарей должна производиться профессионалами и с соблюдением мер безопасности

Как итог – перспективы развития солнечных технологий

Если на Земле максимально эффективной работе солнечных батарей мешает воздух, который в известной пере рассеивает излучение Солнца, то в космосе такой проблемы не существует. Учеными ведется разработка проектов гигантских орбитальных спутников с солнечными батареями, которые будут работать 24 часа в сутки. От них энергия будет передаваться на наземные приемные устройства. Но это дело будущего, а для уже существующих батарей усилия направлены на повышение энергоэффективности и уменьшение размеров устройств.

Солнечные батареи для дома: характеристики, стоимость комплекта и монтажа


Солнечные батареи для дома: где используются, какой принцип работы, срок службы и общие характеристики устройства, комплектация и стоимость оборудования.

Срок службы солнечных батарей

Еще несколько лет назад особого выбора модулей украинского производителя для покупателя не было. Цена на солнечные модули украинских производителей была выше, чем на любые импортные модули.

Даже сейчас ситуация не изменилась, но субсидирование фотоэлектрической промышленности правительством Китая сильно улучшило качество произведенных в Китае солнечных элементов и модулей и снизило цены на них. Сейчас около 80% солнечных элементов на мировом рынке – произведенные в Китае или китайскими производителями. Европа и США были настолько “завалены” китайской продукцией, что это привело к банкротству многих местных производителей солнечных элементов и модулей. Ряд производителей солнечных элементов и пластин разорился или закрыл производство. аналогичная ситуация по производителям солнечного кремния. Во всем мире давление китайских производителей ощущается очень сильно. Настолько сильно, что США и Европейский союз приняли меры, ограничивающие импорт фотоэлектрических модулей китайского производства на свои внутренние рынки.

На украинском рынке все больше китайских и псевдоевропейских модулей. К сожалению, не все китайские модули имеют приемлемое качество. В Китае сейчас производятся и высококачественные модули, которые отвечают всем мировым стандартам; качество таких модулей лучше, чем производимых в Украине в настоящее время. Это стало возможным за счет огромных инвестиций китайского правительства в солнечную энергетику.

Поэтому перед покупателем встал вопрос – как отличить хорошие модули от плохих? Почему одни модули дешевле других? Чем грозит дешевизна модулей и не больше ли покупатель потеряет в дальнейшем, чем сэкономит при покупке?

Действительно, ответы на эти вопросы для неспециалиста не очевидны. Все модули производят электроэнергию, преобразуя солнечный свет – тогда зачем же покупать дороже? Здесь ситуацию можно сравнить c автомобилями – доехать из точки А в точку Б можно на различных автомобилях. Оба они могут иметь одинаковый размер и мощность двигателя. Но один через несколько километров потеряет скорость и не сможет быстро ехать, начнет ломаться через каждый километр и т.п. Другой будет ехать весь путь так же, как и в начале. В итоге на первом вы рискуете не доехать до точки назначения, при этом постоянно его ремонтируя, вас будут обгонять даже велосипедисты. В конце концов на середине пути вы будете вынуждены купить еще один автомобиль. На другом, более дорогом (и качественном) автомобиле вы доедете до конца, даже не заметив пути.

С солнечными панелями ситуация аналогичная – неспециалисту практически невозможно определить, хорош ли модуль. В спецификациях будет написано, что он выдает свою паспортную мощность при стандартных тестовых условиях. Внешний вид тоже будет хорош. Разница становится заметна после нескольких лет эксплуатации. Также, разные модули могут по-разному работать при более низких, чем 1000Вт/м2, освещенностях.

На что обращать внимание при выборе солнечных модулей для вашей системы солнечного электроснабжения?

Цена против качества

Кроме того, что не все производители и солнечные модули одинаковы (это обсуждается в соответствующей статье, посвященной качеству солнечных элементов), есть еще ряд параметров и факторов, на которые следует обратить внимание при принятии решения о покупке и при выборе поставщика. Только лишь цена на модули не должна быть определяющим фактором.

Проблемы и ухудшение параметров солнечных модулей может быть вызвано следующими факторами:

  • Качество солнечного элемента – его эффективность может быть разной. Это зависит от множества его параметров – шунтового и последовательного сопротивлений, шумовых токов, обратного сопротивления и т.д. Многое зависит от качества производства солнечного элемента и качества применяемых при его производстве материалов и оборудования. Известны проблемы практически на каждом этапе производства элемента – начиная от качества примененного кремния, до качества применяемых контактных паст и припоя. Мы в данной статье не будем рассматривать эти проблемы, это предмет для отдельной большой статьи.
  • Качества пайки солнечных элементов. При некачественной пайке возможен локальный перегрев контакта и его прогорание. Лучше выбирать модули, в котором элементы спаяны роботом – в них разброс качества пайки будет минимальным
  • Качество EVA пленки, которая расположена между элементами и стеклом. Старение кристаллических солнечных модулей в основном связано со старением и помутнением этой пленки. Некачественная пленка может начать мутнеть и разрушаться уже через несколько лет. Хорошая пленка будет служить 30 и более лет, при этом ее помутнение (и, следовательно, потеря мощности модулем) не будет превышать 25-30%
  • Качество герметизации модуля и качество задней защитной пленки. Задняя пленка защищает модуль от попадания влаги. В любом модуле происходит диффуззия влаги через пленку. Если качество пленки хорошее, то вся влага, которая попадает внутрь модуля, при его нагревании на солнце, выводится наружа. Если же пленка некачественная, то влаги попадает больше, чем может выйти при нагреве, остаточная влага накапливается внутри модули и разрушает контакты и контактную сетки элементов. Это приводит к преждевременному выходу модуля из строя.
  • Качество алюминиевой рамы. Здесь все понятно: некачественное анодирование может приводить к окислению рамки и его коррозии. К счастью, этот дефект больше визуальный и вряд ли приводит к преждевременному выходу модуля из строя. Хотя, в некоторых случаях (например, при установке модулей на мачтах, где возможны сильные ветровые нагрузки или там, где среда агрессивная) ускоренная коррозия металла может приводить к его разрушения под нагрузками.

Как определить, какое напряжение у модулей?

В последние годы на рынке появились модули с нестандартным напряжением, которые предназначены для работы в последовательных высоковольтных цепочках. С легкой руки непрофессиональных продавцов солнечных панелей, – как российских, так и китайских, – появилась путаница с указанием номинального напряжения солнечных модулей. Мы дадим несколько советов, как определить, какое напряжение у солнечной панели.

Напряжение солнечной панели определяется количеством солнечных элементов, соединенных последовательно. Каждый солнечный элемент имеет рабочее напряжение чуть менее полувольта. В настоящее время есть модули с количеством элементов 36,48, 54, 60,72 и 96. Наиболее распространены модули с количеством элементов 36, 60 и 72. На 48, 54 и 96 элементов встречаются гораздо реже. В таблице ниже приведены основные напряжения этих солнечных панелей.

1ТММ – точка максимальной мощности

2имеется ввиду возможность заряда при соединении к аккумулятору напрямую или через ШИМ контроллер. Остальные модули можно использовать для заряда аккумуляторов, но при обязательном наличии MPPT контроллера.

При покупке модулей для автономной системы с аккумуляторами обращайте внимание на напряжение модуля. В последнее время массово производятся модули высокой мощности (220-270 ватт) с нестандартным напряжением около 20В. Такие модули обычно используются совместно с сетевыми фотоэлектрическими инверторами или с MPPT контролерами заряда. Если вы хотите удешевить систему за счет менее дорогого ШИМ контроллера, выбирайте модули с номинальным напряжением 12 В или 24 В.

Под толерансом подразумевается отклонение реальной мощности модуля от паспортной. Толеранс может быть как положительным, так и отрицательным. Например, модуль c паспортной мощностью 200 Вт может иметь мощность 195Вт; это будет означать, что данный модуль имеет отрицательный толеранс. Положительный толеранс означает, что солнечная панель не только гарантированно будет иметь при стандартных тестовых условиях выходную мощность 200Вт, но и даже больше.

Температурный коэффициент отражает, какое влияние на выходные ток и напряжение модуля будет иметь повышение или понижение температуры модуля. Как известно, напряжение и мощность модуля при повышении температуры уменьшаются, а ток повышается. Чем меньше температурный коэффициент изменения мощности, тем лучше.

Эффективность преобразования солнечного света

C этим понятно – чем больше КПД, тем меньшая площадь модулей потребуется для генерации одинаковой мощности и энергии.

Общее количество энергии, затраченной при производстве модуля

Еще один параметр, на который нужно обращать внимание – общее количество энергии, которое может было затрачено при производстве солнечного модуля – от добычи кремния до доставки до магазина готовой продукции. Этот параметр отражает, насколько энергоемким было производство модуля и насколько быстро солнечный модуль выработает такое же количество энергии, какое было потрачено на его производство (так называемая окупаемость о энергии).

Заявленный срок службы солнечной панели важен по нескольких причинам. Он может отражать уверенность производителя в качестве произведенной продукции. Солидные производители имеют гарантию 25 лет на 80-90% мощности модуля, а также 5 и более лет на механические повреждения.

Однако, нужно учитывать, что гарантия действует до тех пор, пока существует производитель или импортер. Здесь уже “как карта ляжет” – в последние годы из солнечного бизнеса ушли компании, которые, казалось, будут в нем еще очень долго. Но тем не менее, общее правило остается – покупайте у продавцов и производителей, которые давно на рынке и устойчиво “плывут” в бурном потоке рынка. А это сделать можно только, если в команде профессионалы (это мы скромно так на себя намекаем ). Так как мало кто покупает модули напрямую от производителя, важно правильно выбрать продавца или установщика, которые обеспечат вам правильный выбор и режимы работы вашей системы солнечного электроснабжения.

Стоимость модуля зависит от его мощности прямо пропорционально. Однако, чем больше единичная мощность модуля, тем меньше будет его стоимость за ватт. Поэтому, если вам нужна определенная мощность, то лучше ее набрать большими модулями, чем маленькими – это будет и дешевле, и надежнее, т.к. у вас будет меньше соединений. Также, стоимость за ватт модулей со стандартным напряжением 12/24В (количество элементов в модуле 36 или 72) обычно выше, чем с нестандартным количеством элементов в модуле 48, 54 или 60. Для последних при заряде аккумуляторов нужен более дорогой MPPT контроллер.

Тип солнечных элементов, примененных в модуле, также определяет его размер. Поэтому сначала посчитайте, какая мощность вам нужна для снабжения энергией вашей нагрузки, потом посмотрите, хватит ли вам места для размещения такого количества модулей. Может потребоваться выбрать более дорогие, но более эффективные модули, для того, чтобы обеспечить все ваши потребности в энергии. Не забывайте, кстати, что перед проектирование системы солнечного электроснабжения нужно принять все возможные меры по энергосбережению (об этом уже писалось на других страницах нашего сайта).

Пиковая мощность всех модулей измерена при стандартных тестовых условиях:

Масса воздуха AM=1.5, радиация E=1000 Вт/м2 и температура фотоэлектрического элемента Tc=25°C. Такие условия при реальной работе модулей не существуют – модули нагреваются обычно до 40-60 градусов, освещенность почти всегда ниже 1000 Вт/м2 (исключение составляют морозные ясные дни). Поэтому многие производители также дают характеристики модуле при NOCT (normal operation conditions) – обычно для температуры модуля 45-47С и освещенности 800 Вт/м2, при этом выработка модулей примерно на 25-30% ниже пиковой. В морозный ясный день выработка модулей может доходить до 125% от пиковой.

Тип солнечных элементов – монокристаллические, поликристаллические, аморфные и др.

Три основных типа солнечных элементов, которые сейчас массово продаются на рынке (все кремниевые), следующие:

  • монокристалллические. Имеют наибольшую эффективность и удовлетворительные температурные коэффициенты
  • поликристаллические. В настоящее время наиболее популярные, т.к. имеют меньшую стоимость за ватт при примерно таких же характеристиках, как монокристалллические. Последние улучшения в технологии поликристаллических модулей брендовых производителей привели к тому, что их параметры могут быть даже лучше, чем у монокристаллических модулей noname производителей/сборщиков панелей.
  • аморфные (тонкопленочные). Используют наименьшее количество кремния. Имеют примерно в 2 раза меньший КПД по сравнению с кристаллическими модулями. К преимуществам можно отнести низкий температурных коэффициент (т.е. при нагревании мощность таких модулей падает незначительно) и большую чувствительность при низких освещенностях.

Какие же модули, из перечисленных выше, работают лучше? В последнее время появилось много мифов и необоснованных заявлений насчет того, что какой-то из этих типов модулей работает лучше, чем другие. Некоторые уверяют, что поликристаллические элементы лучше работают при низкой освещенности и в пасмурную погоду. Другие утверждают то же самое, но для монокристаллических элементов. Я даже слышал версию, что поликристаллические элементы лучше преобразуют рассеяный свет, потому что кристаллы в них “повернуты в разные стороны”.

Анализ результатов тестирования сотен модулей показывает, что модуль хорош не тот, который моно или поли, а тот, который сделан качественно. Результаты тестирования модулей по PTC (которые ближе к реальным условиям эксплуатации модулей) показывают, что некоторые монокристаллические лучше, чем некоторые поликристаллические, а некоторые поликристаллические лучше чем некоторые монокристаллические.Этот факт также подтверждают многочисленные результаты сравнений модулей конечными пользователями – можно найти как “доказательства” преимуществ моно перед поли, так и преимуществ поли перед моно.

Как же правильно выбрать фотоэлектрические панели китайского производства и не пожалеть об этом?

Общее правило – нужно выбирать солнечные элементы и модули, производимые крупными, хорошо известными, компаниями. Такие модули изготавливаются из элементов самого высокого качества.

Элементы, не прошедшие жесткий отбор брендового прозводителя, продаются сборщикам фотоэлектрических панелей, которых в Китае множество. Более того, все эти сборщики продают свои модули OEM, т.е. под торговыми названиями других компаний. Таких на российском рынке сейчас большинство. Всегда обращайте внимание на то, указан ли завод-изготовитель на наклейке модуля. Риск получить модули неизвестного качества, которые будут неизвестно как работать – очень велик, и если вы даже не знаете производителя (торговое название продавца вам никак не поможет в получении гарантии), то будьте готовы, что вы покупаете солнечные модули без гарантии.

Обычно дешевые китайские модули имеют следующие недостатки:

  • Несоответствие заявленной мощности реальной
  • Сильная деградация модулей в первые же годы эксплуатации (до 20-30%)
  • Низкое качество пайки и сборки
  • Применение некачественных материалов при производстве модуля (флюсы, пленка, алюминий, солнечные элементы и т.п.)

Можно и на интернет-аукционе купить модули. Но будут ли они работать так, как заявлено? Скорее всего нет, и у нас есть факты, это подтверждающие.

Нужно учитывать еще один момент при покупке импортных модулей – вопрос обеспечения гарантии . С российскими производителями проблем в этом отношении нет – все они производят быструю замену или ремонт модулей по гарантии. Ответственные российские импортеры, много лет присутствующие на рынке, также предоставляют свою гарантию на импортируемые ими солнечные модули. В остальных случаях нужно быть очень осторожными при выборе поставщика солнечных панелей.

Модули с наклейкой торговых брендов без указания реального производителя должны вызывать у вас настороженность – в большинстве случаев вы не сможете получить по таким модулям гарантийный сервис, у нас есть множество примеров этого.

Обратите внимание на то, как запаяны модули. Мелкие производители паяют элементы вручную, а не роботом, поэтому толщина припоя при пайке контактных шин элементов меняется. Крупные фирмы паяют роботом, поэтому качество пайки намного выше.

Обязательно узнайте, сколько лет присутствует на рынке поставщик модулей. Даже если китайский производитель дает гарантию на свою продукцию, подумайте, как вы будете производить обмен модуля – если ваш продавец не обеспечит вам гарантию, то практически у вас ее не будет. При прямом обращении к производителю в Китае у вас обязательно возникнут расходы по транспортировке, таможенной очистке и т.п., т.к. эти расходы ни один зарубежный производитель не покрывает. Эти расходы может вам компенсировать только проверенный надежный продавец, который работает в соответствии с российским законодательством. Если вы покупаете модули у известного продавца, который работает на этом рынке уже много лет (например, у нас) – вы получаете от него и гарантию на модули. Опасайтесь покупать импортные модули у установщиков или мелких продавцов – они, в подавляющем большинстве случаев, не могут обеспечить гарантию на продаваемые модули. Всегда требуйте с них гарантийный талон производителя или импортера, не поленитесь позвонить по телефону, указанному в гарантийном талоне и спросить, кто и как обеспечивает гарантийное обслуживание.

Поэтому наша рекомендация – выбирать только брендовые фотоэлектрические модули, или, по крайней мере, на которых указан их завод-производитель. Среди китайских это такие, как TrinaSolar, Yingli, Canadian Solar, JA Solar, Suntech, Motech, Linuo, Hanwha, ReneSola, Jinko и т. д. – подробнее здесь. У них гарантия будет действительно обеспечена многие годы, а не до тех пор, пока существует продавец и его торговая марка.

Если на модуле нет данных по производителю, а только название OEM продавца – это должно вас насторожить. Обычно такие модули производятся из элементов низкого качества (Grade B и С) и по низкой цене.

Солнечные модули стоят недешево, и рассчитаны на срок службы более 30 лет. Было бы очень неумно сэкономить 30-50% на стоимости модуля и получить неработающий через несколько лет модуль, по которому невозможно никому предъявить претензии. Помните, что “дешевое хорошим не бывает”.

Как правильно выбирать солнечные батареи


Общая ситуация на рынке солнечных модулей Еще несколько лет назад особого выбора модулей украинского производителя для покупателя не было.

Одним из главных критериев при покупке любого товара является его срок годности, ведь с течением времени любой прибор выходит из строя. Это правило действует и для солнечных батарей. Их стоимость на сегодняшний день достаточно велика, и от того как долго проработают батареи, можно будет судить, успеют они окупить себя или нет.

Из наших предыдущих статей вы уже знаете, что солнечная система энергообеспечения состоит из 4-х основных элементов: солнечных батарей, аккумулятора, инвертора и контроллера заряда/разряда. Срок службы у них всех различный. Самым «стойким» компонентом считаются СБ, но в любом случае все зависит от типа панели, производителя и многих других факторов.

Срок службы в зависимости от типа батареи

В зависимости от материала, на основе которого сделаны фотоэлементы, варьируется и срок годности панелей. Самым распространенным вариантом считаются кремниевые СБ, но и здесь нет определенной цифры. Для солнечных батарей из поликристаллического кремния срок эксплуатации составляет около 20 лет и более, из монокристаллического – от 30 лет и более, а вот батареи, изготовленные на основе аморфного кремния, проживут не более 10 лет.

Но это еще не все подводные камни. Мало кто задумывается, что с течением времени мощность модулей постепенно снижается. Аморфные панели уже за первые два года эксплуатации потеряют от 10 до 40% первоначальной мощности, для кристаллических батарей этот показатель значительно меньше – 10% за 25 лет. Большинство производителей дают гарантию на свою продукцию 10-25 лет. Получается, что при правильной эксплуатации минимальный срок годности солнечных панелей составит не менее четверти века. Согласитесь, не каждый прибор может похвастаться такими показателями. И что немаловажно, все эти цифры были получены не в лабораторных условиях, а в результате тестирования СБ, установленных еще в 70-80-х годах.

Факторы, влияющие на срок службы

Просчитать срок жизни солнечных батарей с точностью до года невозможно. Существует немало факторов, которые влияют на рассматриваемый показатель. Резкие перепады температур, чрезмерный нагрев солнечных батарей – все это может сократить срок их жизни на несколько лет. Причем сами фотоэлементы практически вечны, разрушаются другие составные части панелей:

  • Задняя поверхность модуля.
  • Пленка, применяемая для герметизации.
  • EVA прослойка между фотоэлементами и стеклом.

Под действием ультрафиолетового излучения происходит разрушение слоя герметика, который применяется для защиты элементов и электрических соединений от влаги. Этот процесс приводит к уменьшению эластичности фотоэлементов и как следствие к механическим повреждениям. Замутнение EVA прослойки становится причиной снижения эффективности работы солнечных батарей, так как меньшее количество света попадает на фотоэлементы. Если Вы планируете изготовить СБ своими руками, помните, что герметик увеличивает срок жизни панели. Покрыв модули обычным силиконом, Вы сделаете их более прочными, это позволит панелям выдерживать резкие перепады температур и другие вредные внешние воздействия.

Не всегда стоимость является объективным критерием качества, но игнорировать ее тоже не стоит. Приобретая дешевые китайские панели, Вы должны быть готовы к тому, что срок их годности будет значительно меньше, чем у батарей, изготовленных на зарекомендовавших себя заводах. Даже небольшие зазоры в раме или неаккуратно спаянные элементы должны восприниматься Вами как весомый аргумент в пользу отказа от подобных модулей.

Российские ученые на передовую…

Солнечная энергетика в России развивается очень медленно, но это не мешает нашим ученым делать инновационные открытия в этой сфере. На этот раз отличились красноярские ученые, которые представили СБ, срок службы которых достигает 100 лет. Как Вы понимаете это в 3 – 4 раза больше, чем у существующих аналогов. Разработанные модули получили вполне логичное название «ВЕК».

И что самое интересное, предложенная ими технология и в вопросе финансовых затрат намного выгоднее. Получается, что красноярские СБ не только проживут дольше, но и обойдутся дешевле. Одни только плюсы. Разработанная технология была удостоена награды «За успешное продвижение инноваций в солнечной энергетике» на конкурсе, который прошел в Москве.

Статью подготовила Абдуллина Регина

Подробнее о работе солнечных панелей:

В сети набрел на диссертацию Зезина Дениса Анатольевича от 2014 года на тему

ДЕГРАДАЦИОННЫЕ ПРОЦЕССЫ В ТОНКОПЛЁНОЧНЫХ СОЛНЕЧНЫХ ЭЛЕМЕНТАХ

Вашему вниманию представлена последняя глава, где оценена продолжительность жизненного цикла солнечной электростанции и некоторые выводы.

[...]Далее было проведено моделирование простой солнечной станции. При создании макета станции требовалось получить заданную мощность (от 1 до100МВт) при использовании типового модуля (60 монокристаллических пластин, спаянных в виде двух лент по 30 элементов), мощностью 150 Вт (15 В, 10 А). При этом максимальное напряжение по постоянному току не должно превышать 1кВ (использовались требования правил эксплуатации энергоустановок в Евросоюзе).

Для того чтобы удовлетворить этим требованиям, солнечные модули соединялись последовательно до получения максимально возможного напряжения, недостающая мощность вырабатывалась аналогичными цепочками модулей, соединёнными параллельно, за счёт вырабатываемого тока.

Безотказная работа модулей определяется надёжностью самих солнечные ячеек, а также паяных соединений, обеспечивающих электрический контакт между ячейками. При соединении модулей в цепочки необходимо использовать штекеры, поскольку внешние выводы, в отличие от паяных соединений, находятся в непосредственном контакте с окружающей средой. Кроме того, каждая такая цепочка снабжается инвертором, который необходим для преобразования постоянного тока в переменный. По этим причинам безотказная работа солнечной электростанции также зависит от надёжности штекеров и инверторов.

При расчётах надёжности предполагалось, что все необходимые электротехнические соединения и оборудование (паяные соединения, штекеры и инверторы) подчиняются экспоненциальному закону распределения. То есть, их отказы рассматривались только как внезапные, интенсивность которых не меняется со временем.

Средние время наработки на отказ для каждого элемента модели были выбраны близкими к реальным : паяное соединение - 105 [ч] (~10 лет), штекер и инвертор – 5*104 [ч] (~5 лет).

На рисунках представлены результаты моделирования. На этих графиках можно заметить, что благодаря большому количеству включённых параллельно цепочек модулей, вероятность безотказной работы солнечной электростанции, близкая к 100%, имеет место на более длительном промежутке времени. Затем наблюдается стремительное снижение вероятности безотказной работы, пропорциональное количеству элементов. Подобное поведение системы напоминает интегральные схемы с резервированием.

Вероятность безотказной работы стандартного модуля и солнечных электростанций

Вероятность безотказной работы солнечных электростанций разной мощности

Одна из особенностей солнечных электростанций – требование большого количества свободной площади. При этом возможности транспорта ограничивают размер одного фотоэлектрического модуля. Как следствие для постройки электростанции мощностью, например, в 100 МВт из стандартных модулей мощностью, скажем, 100 Вт необходимо сформировать миллион соединений. Кроме того, каждый солнечный модуль также состоит из 20-60 солнечных элементов, которые тоже необходимо соединить. Потребность современных солнечных электростанций в большом количестве соединений напоминает аналогичную потребность электроники при переходе от навесного монтажа к интегральным технологиям.

В качестве мер для повышения надёжности можно предложить использование «умных модулей» - устройств, которые по своему прямому назначению выполняют ту же функцию, что и солнечные модули, однако они снабжены дополнительной электроникой, которая обеспечивает закорачивание вышедших из строя элементов. Подобная система необходима, поскольку один вышедший из строя элемент отключает всю цепочку модулей. Безусловно, на крупных электростанциях большое количество параллельных соединений позволяет отсрочить момент выхода электростанции, но потери мощности будут накапливаться. Подобные системы сейчас только разрабатываются в разрезе обеспечения работы батареи в условиях частичного затенения (например ), поскольку плохо освещённая оказывается фактически не работающей. Подобные разработки могут оказаться полезными и для обеспечения надёжности солнечных батарей.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то