Спектры. Ряд Фурье в виде простых гармоник

Преобразования Фурье и Хартли трансформируют функции времени в функции частоты, содержащие информацию об амплитуде и фазе. Ниже приведены графики непрерывной функции g (t ) и дискретной g (τ), где t и τ — моменты времени.


Обе функции начинаются в нуле, скачком достигают положительного значения и экспоненциально затухают. По определению преобразование Фурье для непрерывной функции есть интеграл по всей вещественной оси, F (f ), а для дискретной функции — сумма по конечному набору отсчётов, F (ν):

где f , ν — значения частоты, n — число выборочных значений функции, а i =√ –1 — мнимая единица. Интегральное представление больше подходит для теоретических исследований, а представление в виде конечной суммы — для расчётов на компьютере. Интегральное и дискретное преобразования Хартли определяются аналогичным образом:

Хотя единственная разница в обозначениях между определениями Фурье и Хартли заключается в присутствии множителя перед синусом, тот факт, что у преобразования Фурье есть и действительная, и мнимая часть, делает представления этих двух преобразований совершенно различными. Дискретные преобразования Фурье и Хартли имеют по существу ту же форму, что и их непрерывные аналоги.



Хотя графики выглядят по-разному, из преобразований Фурье и Хартли можно вывести, как показано ниже, ту же информацию об амплитуде и фазе.



Амплитуда Фурье определяется квадратным корнем из суммы квадратов действительной и мнимой частей. Амплитуда Хартли определяется квадратным корнем из суммы квадратов H (–ν) и H (ν). Фаза Фурье определяется арктангенсом мнимой части, делённой на действительную часть, а фаза Хартли определяется суммой 45° и арктангенса от H (–ν), делённого на H (ν).

Общие описания

Французский математик Фурье (Ж. Б. Ж. Фурье 1768-1830) провоз гласил достаточно смелую для своего времени гипотезу. Согласно этой гипотезе не существует функции, которую нельзя было бы разложить в тригонометрический ряд. Однако, к сожалению, в то время такая идея не была воспринята всерьез. И это естественно. Сам Фурье не смог привести убедительных доказательств, а интуитивно поверить в гипотезу Фурье очень трудно. Особенно нелегко представить тот факт, что при сложении простых функций, подобных тригонометрическим, воспроизводятся функции, совершенно на них не похожие. Но если предположить, что гипотеза Фурье верна, то периодический сигнал любой формы можно разложить на синусоиды различных частот, или наоборот, посредством соответствующего сложения синусоид с разными частотами возможно синтезировать сигнал какой угодно формы. Следовательно, если эта теория верна, то ее роль в обработке сигналов может быть очень велика. В этой главе первым делом попы­таемся проиллюстрировать правильность гипотезы Фурье.

Рассмотрим функцию

f(t)= 2sin t – sin 2t

Простой тригонометрический ряд

Функция является суммой тригонометрических функций, иными словами, представлена в виде тригонометрического ряда из двух членов. Добавим одно слагаемое и создадим новый ряд из трех членов

Снова добавив несколько слагаемых, получим новый тригонометрический ряд из десяти членов:

Коэффициенты этого тригонометрического ряда обозначим как b k , где k - целые числа. Если внимательно посмотреть на последнее соотношение, то видно, что коэффициенты можно описать следующим выражением:

Тогда функцию f(t) можно представить следующим образом:

Коэффициенты b k - это амплитуды синусоид с угловой частотой к. Иначе говоря, они задают величину частотных составляющих.

Рассмотрев случай, когда верхний индекс к равен 10, т.е. М= 10. Увеличив значение М до 100, получим функцию f(t).

Эта функция, будучи тригонометрическим рядом, по форме приближается к пилообразному сигналу. И, похоже, гипотеза Фурье совершенно верна по отноше­нию к физическим сигналам, с которыми мы имеем дело. К тому же в этом примере форма сигнала не гладкая, а включает точки разрыва. И то, что функция воспроизводится даже в точках разрыва, выглядит многообещающим.

В физическом мире действительно много явлений, которые можно представить как суммы колебаний различных частот. Типичным примером этих явлений является свет. Он представляет собой сумму электромагнитных волн с длиной волны от 8000 до 4000 ангстрем (от красного цвета свечения до фиолетового). Вы, конечно, знаете, что если белый свет пропустить через призму, то появится спектр из семи чистых цветов. Это происходит потому, что коэффициент преломления стекла, из которого сделана призма, изменяется в зависимости от длины электромагнитной волны. Это как раз и является доказательством того, что белый свет - это сумма световых волн различной дли­ны. Итак, пропустив свет через призму и получив его спектр, мы можем проанализировать свойства света, исследуя цветовые комбинации. Подобно этому, посредством разложения принятого сигнала на различные частотные составляющие, мы можем узнать, как возник первоначальный сигнал, по какому пути он следовал или, наконец, какому внешнему влиянию он подвергался. Одним словом, мы можем получить информацию для выяснения происхождения сигнала.

Подобный метод анализа называется спектральным анализом или анализом Фурье.

Рассмотрим следующую систему ортонормированных функций:

Функцию f(t) можно разложить по этой системе функций на отрезке [-π, π] следующим образом:

Коэффициенты α k , β k , как было показано ранее, можно выразить через скалярные произведения:

В общем виде функцию f(t) можно представить следующим образом:

Коэффициенты α 0 , α k , β k называют коэффициентами Фурье, а подобное представление функции называется разложением в ряд Фурье. Иногда такое представление называют действительным разложением в ряд Фурье, а коэффициенты - действительными коэффициентами Фурье. Термин «действительный» вводится для того, чтобы отличить представленное разложение от разложения в ряд Фурье в комплексной форме.

Как уже было сказано ранее, произвольную функцию можно разложить по системе ортогональных функций, даже если функции из этой системы не представляются в виде тригонометрического ряда. Обычно под разложением в ряд Фурье подразумевается разложение в тригонометрический ряд. Если коэффициенты Фурье выразить через α 0 , α k , β k получим:

Поскольку при k = 0 coskt = 1, то константа а 0 /2 выражает общий вид коэффициента а k при k = 0.

В соотношении (5.1) колебание самого большого периода, представленное суммой cos t и sin t, называют колебанием основной частоты или первой гармоникой. Колебание с периодом, равным половине основного периода, называют второй гармоникой. Колебание с периодом, равным 1/3 основного периода, называют третьей гармоникой и т.д. Как видно из соотношения (5.1) a 0 является постоянной величиной, выражающей среднее значение функции f{t) . Если функция f(t) представляет собой электрический сигнал, то а 0 представляет его постоянную составляющую. Следовательно, все остальные коэффициенты Фурье выражают его переменные составляющие.

На Рис. 5.2 представлен сигнал и его разложение в ряд Фурье: на постоянную составляющую и гармоники различных частот. Во временной области, где переменной величиной является время, сигнал выражается функцией f(t), а в частотной области, где переменной величиной является частота, сигнал представляется коэффициен­тами Фурье (a k , b к).

Первая гармоника является периодической функцией с периодом 2 π.Прочие гармоники также имеют период, кратный 2 π. Исходя из этого, при формировании сигнала из составляющих ряда Фу­рье мы, естественно, получим периодическую функцию с периодом 2 π. А если это так, то разложение в ряд Фурье - это, собственно говоря, способ представления периодических функций.

Разложим в ряд Фурье сигнал часто встречающегося вида. Например, рассмотрим упомянутую ранее пилообразную кривую (Рис. 5.3). Сигнал такой формы на отрезке - π < t < π я выражается функцией f(t) = t , поэтому коэффициенты Фурье могут быть выражены следующим образом:

Пример 1.

Разложение в ряд Фурье сигнала пилообразной формы

f(t) = t,

Разложение периодических несинусоидальных функций

Общие определения

Часть 1. Теория линейных цепей (продолжение)

ЭЛЕКТРОТЕХНИКИ

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ

Учебное пособие для студентов электроэнергетических специальностей

Т. Электрические цепи периодического несинусоидального тока

Как известно, в электроэнергетике в качестве стандартной формы для то­ков и на­пря­жений принята синусоидальная форма. Однако в реальных условиях формы кривых токов и напряжений могут в той или иной мере отличаться от синусоидальных. Искажения форм кривых этих функций у приемников приво­дят к дополнительным потерям энергии и сниже­нию их коэффициента полез­ного действия. Синусоидальность формы кривой напряжения генератора явля­ется одним из показателей качества электрической энергии как товара.

Возможны следующие причины искажения формы кривых токов и на­пряжений в сложной цепи:

1) наличие в электрической цепи нелинейных элементов, параметры ко­торых за­висят от мгновенных значений тока и напряжения [R, L, C=f (u,i )], (на­пример, выпрямитель­ные устройства, электросварочные агрегаты и т. д.);

2) наличие в электрической цепи параметрических элементов, пара­метры кото­рых изменяются во времени[R, L, C=f (t )];

3) источник электрической энергии (трехфазный генератор) в силу кон­структивных особенностей не может обеспечить идеальную синусоидальную форму выходного напряжения;

4) влияние в комплексе перечисленных выше факторов.

Нелинейные и параметрические цепи рассматриваются в отдельных гла­вах курса ТОЭ. В настоящей главе исследуется поведение линейных электриче­ских цепей при воздей­ствии на них источников энергии с несинусоидальной формой кривой.

Из курса математики известно, что любая периодическая функция вре­мени f (t ), удов­летворяющая условиям Дирихле, может быть представлена гар­моническим рядом Фурье:

Здесь А 0 – постоянная составляющая, - k -я гармониче­ская составляю­щая или сокращенно k -я гармоника. 1-я гармоника называется основной, а все последующие - выс­шими.

Амплитуды отдельных гармоник А к не зависят от способа разложения функции f (t ) в ряд Фурье, в то же время начальные фазы отдельных гармоник зависят от выбора начала отсчета времени (начала координат).

Отдельные гармоники ряда Фурье можно представить в виде суммы си­нусной и ко­си­нусной составляющих:

Тогда весь ряд Фурье получит вид:

Соотношения между коэффициентами двух форм ряда Фурье имеют вид:

Если k -ю гармонику и ее синусную и косинусную составляющие заменить ком­плекс­ными числами, то соотношение между коэффициентами ряда Фурье можно предста­вить в комплексной форме:


Если периодическая несинусоидальная функция времени задана (или мо­жет быть вы­ражена) аналитически в виде математического уравнения, то коэф­фициенты ряда Фурье оп­ределяются по формулам, известным из курса матема­тики:

На практике исследуемая несинусоидальная функция f (t ) обычно задается в виде гра­фической диаграммы (графически) (рис. 118) или в виде таблицы ко­ор­динат точек (таблично) в интервале одного периода (табл. 1). Чтобы выпол­нить гармонический анализ такой функции по приведенным выше уравнениям, ее необходимо предварительно заменить математиче­ским выражением. Замена функции, заданной графически или таблично математическим уравнением, по­лучила название аппроксимации функции.

Преобразование Фурье представляет собой наиболее широко используемое средство преобразовать произвольную функцию от времени в набор ее частотных составляющих на плоскости комплексных чисел. Это преобразование может быть применено для апериодических функций для определения их спектров, и в этом случае комплексный оператор s может быть заменен на/со:

С целью определения наиболее интересных частот может быть использовано численное интегрирование на комплексной плоскости.

Для ознакомления с основами поведения этих интегралов рассмотрим несколько примеров. На Рис. 14.6 (слева) приведен импульс единичной площади во временной области и его спектральный состав; в центре - импульс такой же площади, но большей амплитуды, а справа - амплитуда импульса бесконечна, однако его площадь по-прежнему равна единице. Правая картинка особенно интересна тем, что спектр импульса с нулевой шириной содержит все частоты с равными амплитудами.

Рис. 14.6. Спектры импулъсовразной ширины, по одинаковой пяошрди

В 1822 г. французский математикЖ. Б. Ж. Фурье (J. B.J. Fourier) показал в своей работе, посвященной вопросам теплопроводности, что любая периодическая функция может быть разложена на исходные компоненты, включающие частоту повторения и набор гармоник этой частоты, причем каждая из гармоник имеет свою амплитуду и фазу по отношению к частоте повторения. Основные формулы, используемые при Фурье-преобразовании,таковы:

где A() представляет собой компоненту постоянного тока, а А п и В п - гармоники основной частоты порядка и, находящиеся соответственно в фазе и противофазе с ней. Функция/(*), таким образом, является суммой этих гармоник и Ло-

В случаях, когда f{x) симметрична относительно тс/2, т. e. f{x) на области от л до 2л = -f{x) на области от 0 до л, и отсутствует компонента постоянного тока, формулы Фурье-преобразования упрощаются до:

где n = 1, 3,5, 7…

Все гармоники являются синусоидами, только часть из них находится в фазе, а часть - в противофазе с основной частотой. Большинство форм сигналов, встречающихся в силовой электронике, могут быть разложены на гармоники этим манером.

Если преобразование Фурье применить к прямоугольным импульсам длительностью 120°, то гармоники будут составлять набор порядка k = би ± 1, где n - одно из целых чисел. Амплитуда каждой гармоники h по отношению к первой связана с ее номером соотношением h = l//e. При этом первая гармоника будет иметь амплитуду, в 1.1 раза большую, чем амплитуда прямоугольного сигнала.

Преобразование Фурье выдает амплитудное значение для каждой гармоники, но, так как все они являются синусоидальными, среднеквадратичное значение получится просто делением соответствующей амплитуды на корень из 2. Среднеквадратичное значение сложного сигнала представляет собой корень квадратный из суммы квадратов среднеквадратичных значений каждой гармоники, включая первую.

При работе с повторяющимися импульсными функциями полезно рассмотреть рабочий цикл. Если повторяющиеся импульсы на Рис. 14.7 имеют среднеквадратичное значение X за время А, то среднеквадратичное значение за время В будет равно X(A/B) 1 ‘ 2 . Таким образом, среднеквадратичное значение повторяющихся импульсов пропорционально корню квадратному из значения рабочего цикла. Применив этот принцип к прямоугольным импульсамдлительностью 120° (рабочий цикл 2/3) с единичной амплитудой, получим среднеквадратичное значение (2/3) 1/2 = 0.8165.

Рис. 14.7. Определение среднеквадратичного значения (RMS) для повторяющихся

импульсов

Интересно проверить этот результат путем суммирования гармоник, соответствующих упомянутой последовательности прямоугольных импульсов. В Табл. 14.2 приведены результаты этого суммирования. Как видно, все совпадает.

Таблица 14.2. Результаты суммирования гармоник, соответствующих

периодическому сигналу с рабочим циклом 2/3 и единичной амплитудой

Номер гармоники

Амплитуда гармоники

Суммарное среднеквадратичное значение

Для целей сравнения можно сгруппировать любой набор гармоник и определить соответствующий общий уровень гармонических искажений. Среднеквадратичное значение сигнала при этом определяется по формуле

где h\ - амплитуда первой (основной) гармоники, а h„ - амплитуда гармоник порядка n > 1.

Компоненты, ответственные за искажения, могут быть записаны отдельно как

где n > 1. Тогда

где Fund - первая гармоника, а коэффициент нелинейньа искажений {THD) получится равным D/Fund.

Хотя анализ прямоугольной последовательности импульсов весьма интересен, он редко применяется в реальном мире. Коммутационные эффекты и другие процессы делают прямоугольные импульсы больше похожими на трапецеидальные, или, в случае с преобразователями, с передним фронтом, описываемым выражением 1 cos(0) и задним фронтом, описываемым зависимостью cos(0), где 0 < 0

логарифмическим масштабом наклон соответствующих участков этого графика составляет -2 и -1.Для систем с типовыми значениями реактанса изменение наклона примерно приходится на частоты от 11-й до 35-й гармоники сетевой частоты, причем при увеличении реактанса или тока в системе частота изменения наклона снижается. Практический результат от всего этого состоит в меньшей значимости высших гармоник, чем можно подумать.

Хотя увеличение реактанса способствует уменьшению гармоник высших порядков, обычно это не выполнимо. Более предпочтительным для уменьшения гармонических составляющих в потребляемом токе является увеличение числа импульсов при выпрямлении или преобразовании напряжения, достигаемое сдвигом фаз. Применительно к трансформаторам эта тема была затронута в гл. 7. Если тиристорный преобразователь или выпрямитель питается от обмоток трансформатора, соединенных звездой и треугольником, а выходы преобразователя или выпрямителя соединены последовательно или параллельно, то получается 12-пульсационное выпрямление. Номера гармоник в наборе теперь получаются k = \2n ± 1 взамен k = 6и + 1, где n - одно из целых чисел. Взамен гармоник 5-го и 7-го порядкатеперь появляются гармоники 11-го и 13-го порядков, амплитуда которых существенно меньше. Вполне возможно применение еще большего числа пульсаций, и, например, в больших источниках питания для электрохимических установок используются 48-пульсационные системы. Так как в больших выпрямителях и преобразователях используются наборы соединенных параллельно диодов или тиристоров, дополнительная стоимость фазосдвигающих обмоток в трансформаторе в основном определяет и его цену. На Рис. 14.8 показаны преимущества 12-пульсационной схемы перед 6-пульсационной. Гармоники 11-го и 13-го порядка в 12-пульсационной схеме имеют типовое значение амплитуды, равное примерно 10% от первой гармоники. В схемах с большим числом пульсаций гармоники имеют порядок k = pn + 1, где p - число пульсаций.

Для интереса отметим, что пары наборов гармоник, которые просто сдвинуты друг относительно друга на 30°, не взаимоуничтожаются в 6пульсационной схеме. Токи этих гармоник проникают назад через трансформатор; таким образом, требуется дополнительный сдвиг фаз для получения возможности их взаимного уничтожения.

Не все гармоники находятся в фазе с первой. Например, в трехфазном наборе гармоник, соответствующем последовательности прямоугольных импульсов 120°, фазы гармоник меняются в соответствии с последовательностью -5-я, +7-я, -11-я, +13-я и т.д. При разбалансировке в трехфазной цепи могут возникать однофазные компоненты, что влечет за собой утраивание гармоник с нулевым фазовым сдвигом.

Рис. 14.8. Спектры 6и 12-пульсациоиных преобразователей

Изолирующие трансформаторы часто рассматриваются как панацея от проблем с гармониками. Эти трансформаторы добавляют некоторый реактанс в систему и тем самым способствуют снижению уровня высших гармоник, однако, кроме подавления токов нулевой последовательности и электростатической развязки, проку от них немного.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то