Устройство для чтения магнитных дисков. Устройство и принцип работы жесткого диска

Жесткие диски, или, как их еще называют, винчестеры, являются одной из самых главных составляющих компьютерной системы. Об это знают все. Но вот далеко не каждый современный пользователь даже в принципе догадывается о том, как функционирует жесткий диск. Принцип работы, в общем-то, для базового понимания достаточно несложен, однако тут есть свои нюансы, о которых далее и пойдет речь.

Вопросы предназначения и классификации жестких дисков?

Вопрос предназначения, конечно, риторический. Любой пользователь, пусть даже самого начального уровня, сразу же ответит, что винчестер (он же жесткий диск, он же Hard Drive или HDD) сразу же ответит, что он служит для хранения информации.

В общем и целом верно. Не стоит забывать, что на жестком диске, кроме операционной системы и пользовательских файлов, имеются созданные ОС загрузочные секторы, благодаря которым она и стартует, а также некие метки, по которым на диске можно быстро найти нужную информацию.

Современные модели достаточно разнообразны: обычные HDD, внешние жесткие диски, высокоскоростные твердотельные накопители SSD, хотя их именно к жестким дискам относить и не принято. Далее предлагается рассмотреть устройство и принцип работы жесткого диска, если не в полном объеме, то, по крайней мере, в таком, чтобы хватило для понимания основных терминов и процессов.

Обратите внимание, что существует и специальная классификация современных HDD по некоторым основным критериям, среди которых можно выделить следующие:

  • способ хранения информации;
  • тип носителя;
  • способ организации доступа к информации.

Почему жесткий диск называют винчестером?

Сегодня многие пользователи задумываются над тем, почему называют винчестерами, относящимися к стрелковому оружию. Казалось бы, что может быть общего между этими двумя устройствами?

Сам термин появился еще в далеком 1973 году, когда на рынке появился первый в мире HDD, конструкция которого состояла из двух отдельных отсеков в одном герметичном контейнере. Емкость каждого отсека составляла 30 Мб, из-за чего инженеры дали диску кодовое название «30-30», что было в полной мере созвучно с маркой популярного в то время ружья «30-30 Winchester». Правда, в начале 90-х в Америке и Европе это название практически вышло из употребления, однако до сих пор остается популярным на постсоветском пространстве.

Устройство и принцип работы жесткого диска

Но мы отвлеклись. Принцип работы жесткого диска кратко можно описать как процессы считывания или записи информации. Но как это происходит? Для того чтобы понять принцип работы магнитного жесткого диска, в первую очередь необходимо изучить, как он устроен.

Сам жесткий диск представляет собой набор пластин, количество которых может колебаться от четырех до девяти, соединенных между собой валом (осью), называемым шпинделем. Пластины располагаются одна над другой. Чаще всего материалом для их изготовления служат алюминий, латунь, керамика, стекло и т. д. Сами же пластины имеют специальное магнитное покрытие в виде материала, называемого платтером, на основе гамма-феррит-оксида, окиси хрома, феррита бария и т. д. Каждая такая пластина по толщине составляет около 2 мм.

За запись и чтение информации отвечают радиальные головки (по одной на каждую пластину), а в пластинах используются обе поверхности. За которого может составлять от 3600 до 7200 об./мин, и перемещение головок отвечают два электрических двигателя.

При этом основной принцип работы жесткого диска компьютера состоит в том, что информация записывается не куда попало, а в строго определенные локации, называемые секторами, которые расположены на концентрических дорожках или треках. Чтобы не было путаницы, применяются единые правила. Имеется ввиду, что принципы работы накопителей на жестких дисках, с точки зрения их логической структуры, универсальны. Так, например, размер одного сектора, принятый за единый стандарт во всем мире, составляет 512 байт. В свою очередь секторы делятся на кластеры, представляющие собой последовательности рядом находящихся секторов. И особенности принципа работы жесткого диска в этом отношении состоят в том, что обмен информацией как раз и производится целыми кластерами (целым числом цепочек секторов).

Но как же происходит считывание информации? Принципы работы накопителя на жестких магнитных дисках выглядят следующим образом: с помощью специального кронштейна считывающая головка в радиальном (спиралевидном) направлении перемещается на нужную дорожку и при повороте позиционируется над заданным сектором, причем все головки могут перемещаться одновременно, считывая одинаковую информацию не только с разных дорожек, но и с разных дисков (пластин). Все дорожки с одинаковыми порядковыми номерами принято называть цилиндрами.

При этом можно выделить еще один принцип работы жесткого диска: чем ближе считывающая головка к магнитной поверхности (но не касается ее), тем выше плотность записи.

Как осуществляется запись и чтение информации?

Жесткие диски, или винчестеры, потому и были названы магнитными, что в них используются законы физики магнетизма, сформулированные еще Фарадеем и Максвеллом.

Как уже говорилось, на пластины из немагниточувствительного материала наносится магнитное покрытие, толщина которого составляет всего лишь несколько микрометров. В процессе работы возникает магнитное поле, имеющее так называемую доменную структуру.

Магнитный домен представляет собой строго ограниченную границами намагниченную область ферросплава. Далее принцип работы жесткого диска кратко можно описать так: при возникновении воздействия внешнего магнитного поля, собственное поле диска начинает ориентироваться строго вдоль магнитных линий, а при прекращении воздействия на дисках появляются зоны остаточной намагниченности, в которой и сохраняется информация, которая ранее содержалась в основном поле.

За создание внешнего поля при записи отвечает считывающая головка, а при чтении зона остаточной намагниченности, оказавшись напротив головки, создает электродвижущую силу или ЭДС. Далее все просто: изменение ЭДС соответствует единице в двоичном коде, а его отсутствие или прекращение - нулю. Время изменения ЭДС принято называть битовым элементом.

Кроме того, магнитную поверхность чисто из соображений информатики можно ассоциировать, как некую точечную последовательность битов информации. Но, поскольку местоположение таких точек абсолютно точно вычислить невозможно, на диске нужно установить какие-то заранее предусмотренные метки, которые помогли определить нужную локацию. Создание таких меток называется форматированием (грубо говоря, разбивка диска на дорожки и секторы, объединенные в кластеры).

Логическая структура и принцип работы жесткого диска с точки зрения форматирования

Что касается логической организации HDD, здесь на первое место выходит именно форматирование, в котором различают два основных типа: низкоуровневое (физическое) и высокоуровневое (логическое). Без этих этапов ни о каком приведении жесткого диска в рабочее состояние говорить не приходится. О том, как инициализировать новый винчестер, будет сказано отдельно.

Низкоуровневое форматирование предполагает физическое воздействие на поверхность HDD, при котором создаются секторы, расположенные вдоль дорожек. Любопытно, что принцип работы жесткого диска таков, что каждый созданный сектор имеет свой уникальный адрес, включающий в себя номер самого сектора, номер дорожки, на которой он располагается, и номер стороны пластины. Таким образом, при организации прямого доступа та же оперативная память обращается непосредственно по заданному адресу, а не ищет нужную информацию по всей поверхности, за счет чего и достигается быстродействие (хотя это и не самое главное). Обратите внимание, что при выполнении низкоуровневого форматирования стирается абсолютно вся информация, и восстановлению она в большинстве случаев не подлежит.

Другое дело - логическое форматирование (в Windows-системах это быстрое форматирование или Quick format). Кроме того, эти процессы применимы и к созданию логических разделов, представляющих собой некую область основного жесткого диска, работающую по тем же принципам.

Логическое форматирование, прежде всего, затрагивает системную область, которая состоит из загрузочного сектора и таблиц разделов (загрузочная запись Boot record), таблицы размещения файлов (FAT, NTFS и т. д.) и корневого каталога (Root Directory).

Запись информации в секторы производится через кластер несколькими частями, причем в одном кластере не может содержаться два одинаковых объекта (файла). Собственно, создание логического раздела, как бы отделяет его от основного системного раздела, вследствие чего информация, на нем хранимая, при появлении ошибок и сбоев изменению или удалению не подвержена.

Основные характеристики HDD

Думается, в общих чертах принцип работы жесткого диска немного понятен. Теперь перейдем к основным характеристикам, которые и дают полное представление обо всех возможностях (или недостатках) современных винчестеров.

Принцип работы жесткого диска и основные характеристики могут быть совершенно разными. Чтобы понять, о чем идет речь, выделим самые основные параметры, которыми характеризуются все известные на сегодня накопители информации:

  • емкость (объем);
  • быстродействие (скорость доступа к данным, чтение и запись информации);
  • интерфейс (способ подключения, тип контроллера).

Емкость представляет собой общее количество информации, которая может быть записана и сохранена на винчестере. Индустрия по производству HDD развивается так быстро, что сегодня в обиход вошли уже жесткие диски с объемами порядка 2 Тб и выше. И, как считается, это еще не предел.

Интерфейс - самая значимая характеристика. Она определяет, каким именно способом устройство подключается к материнской плате, какой именно контроллер используется, как осуществляется чтение и запись и т. д. Основными и самыми распространенными интерфейсами считаются IDE, SATA и SCSI.

Диски с IDE-интерфейсом отличаются невысокой стоимостью, однако среди главных недостатков можно выделить ограниченное количество одновременно подключаемых устройств (максимум четыре) и невысокую скорость передачи данных (причем даже при условии поддержки прямого доступа к памяти Ultra DMA или протоколов Ultra ATA (Mode 2 и Mode 4). Хотя, как считается, их применение позволяет повысить скорость чтения/записи до уровня 16 Мб/с, но в реальности скорость намного ниже. Кроме того, для использования режима UDMA требуется установка специального драйвера, который, по идее, должен поставляться в комплекте с материнской платой.

Говоря о том, что собой представляет принцип работы жесткого диска и характеристики, нельзя обойти стороной и который является наследником версии IDE ATA. Преимущество данной технологии состоит в том, что скорость чтения/записи можно повысить до 100 Мб/с за счет применения высокоскоростной шины Fireware IEEE-1394.

Наконец, интерфейс SCSI по сравнению с двумя предыдущими является наиболее гибким и самым скоростным (скорость записи/чтения достигает 160 Мб/с и выше). Но и стоят такие винчестеры практически в два раза дороже. Зато количество одновременно подключаемых устройств хранения информации составляет от семи до пятнадцати, подключение можно осуществлять без обесточивания компьютера, а длина кабеля может составлять порядка 15-30 метров. Собственно, этот тип HDD большей частью применяется не в пользовательских ПК, а на серверах.

Быстродействие, характеризующее скорость передачи и пропускную способность ввода/вывода, обычно выражается временем передачи и объемом передаваемых расположенных последовательно данных и выражается в Мб/с.

Некоторые дополнительные параметры

Говоря о том, что представляет собой принцип работы жесткого диска и какие параметры влияют на его функционирование, нельзя обойти стороной и некоторые дополнительные характеристики, от которых может зависеть быстродействие или даже срок эксплуатации устройства.

Здесь на первом месте оказывается скорость вращения, которая напрямую влияет на время поиска и инициализации (распознавания) нужного сектора. Это так называемое скрытое время поиска - интервал, в течение которого необходимый сектор поворачивается к считывающей головке. Сегодня принято несколько стандартов для скорости вращения шпинделя, выраженной в оборотах в минуту со временем задержки в миллисекундах:

  • 3600 - 8,33;
  • 4500 - 6,67;
  • 5400 - 5,56;
  • 7200 - 4,17.

Нетрудно заметить, что чем выше скорость, тем меньшее время затрачивается на поиск секторов, а в физическом плане - на оборот диска до установки для головки нужной точки позиционирования пластины.

Еще один параметр - внутренняя скорость передачи. На внешних дорожках она минимальна, но увеличивается при постепенном переходе на внутренние дорожки. Таким образом, тот же процесс дефрагментации, представляющий собой перемещение часто используемых данных в самые быстрые области диска, - не что иное, как перенос их на внутреннюю дорожку с большей скоростью чтения. Внешняя скорость имеет фиксированные значения и напрямую зависит от используемого интерфейса.

Наконец, один из важных моментов связан с наличием у жесткого диска собственной кэш-памяти или буфера. По сути, принцип работы жесткого диска в плане использования буфера в чем-то похож на оперативную или виртуальную память. Чем больше объем кэш-памяти (128-256 Кб), тем быстрее будет работать жесткий диск.

Главные требования к HDD

Основных требований, которые в большинстве случаев предъявляются жестким дискам, не так уж и много. Главное - длительный срок службы и надежность.

Основным стандартом для большинства HDD считается срок службы порядка 5-7 лет со временем наработки не менее пятисот тысяч часов, но для винчестеров высокого класса этот показатель составляет не менее миллиона часов.

Что касается надежности, за это отвечает функция самотестирования S.M.A.R.T., которая следит за состоянием отдельных элементов жесткого диска, осуществляя постоянный мониторинг. На основе собранных данных может формироваться даже некий прогноз появления возможных неисправностей в дальнейшем.

Само собой разумеется, что и пользователь не должен оставаться в стороне. Так, например, при работе с HDD крайне важно соблюдать оптимальный температурный режим (0 - 50 ± 10 градусов Цельсия), избегать встрясок, ударов и падений винчестера, попадания в него пыли или других мелких частиц и т. д. Кстати сказать, многим будет интересно узнать, что те же частицы табачного дыма примерно в два раза больше расстояния между считывающей головкой и магнитной поверхностью винчестера, а человеческого волоса - в 5-10 раз.

Вопросы инициализации в системе при замене винчестера

Теперь несколько слов о том, какие действия нужно предпринять, если по каким-то причинам пользователь менял жесткий диск или устанавливал дполнительный.

Полностью описывать это процесс не будем, а остановимся только на основных этапах. Сначала винчестер необходимо подключить и посмотреть в настройках BIOS, определилось ли новое оборудование, в разделе администрирования дисков произвести инициализацию и создать загрузочную запись, создать простой том, присвоить ему идентификатор (литеру) и выполнить форматирование с выбором файловой системы. Только после этого новый «винт» будет полностью готов к работе.

Заключение

Вот, собственно, и все, что вкратце касается основ функционирования и характеристик современных винчестеров. Принцип работы внешнего жесткого диска здесь не рассматривался принципиально, поскольку он практически ничем не отличается от того, что используется для стационарных HDD. Единственная разница состоит только в методе подключения дополнительного накопителя к компьютеру или ноутбуку. Наиболее распространенным является соединение через USB-интерфейс, который напрямую соединен с материнской платой. При этом, если хотите обеспечить максимальное быстродействие, лучше использовать стандарт USB 3.0 (порт внутри окрашен в синий цвет), естественно, при условии того, что и сам внешний HDD его поддерживает.

В остальном же, думается, многим хоть немного стало понятно, как функционирует жесткий диск любого типа. Быть может, выше было приведено слишком много тем более даже из школьного курса физики, тем не менее без этого в полной мере понять все основные принципы и методы, заложенные в технологиях производства и применения HDD, понять не получится.

1. Что такое жесткий диск?

Жесткий диск (часто называемый винчестером)устройство, предназначенное для длительного хранения информации. В отличие от оперативной памяти (ОЗУ или RAM ), теряющей информацию при отключении питания, жесткий диск хранит информацию постоянно. Жесткий диск чаще всего имеет объем больше, чем оперативная память.

1.1. Основные компоненты и принцип работы жесткого диска

Жесткий диск состоит из гермоблока и платы с электронными элементами. На платеразмещена вся управляющая электроника, за исключением предусилителя, размещенного внутри гермоблока в непосредственной близости от головок. В гермоблокеразмещенывсе механические части: пластины (диски), шпиндель (ось), магнитные головки чтения/записи, двигатель.

Пластины имеют форму диска и изготавливаются из металла (чаще всего используется алюминий), керамики или стекла. Обе стороны каждой пластины покрыты тонким слоем намагничивающегося материала. В последнее время для этогоиспользуется оксид хрома, который имеет большую износостойкость, чем покрытие наоснове оксида железа, используемого в ранних моделях. Количество пластин определяет физический объем накопителя.

Пластины установлены на центральной оси или шпинделе. Шпиндель вращает все пластины с одинаковой скоростью.

С левой илиправой стороны отшпинделя, находится поворотный позиционер , несколько напоминающий по виду башенный кран: с одной стороны оси находятся обращенные кдискамтонкие,длинныеи легкие несущиемагнитных головок , а с другой -короткий и более массивный хвостовиксобмоткой электромагнитного привода. На каждую пластину приходится по два коромысла, расположенные с разных сторон. Таким образом, каждой стороне каждой пластины соответствует одна головка чтения/записи.

Чем меньше головка и чем ниже она парит над поверхностью диска, тем меньшие магнитные области она может записывать, и, следовательно, тем больше данных можно записать на диск. Головка чтения/записи напоминает подковообразный магнит, так как она образована противоположными полюсами магнита, обращенными друг к другу через узкий промежуток. Этот промежуток делается исключительно узким, чтобы лишь очень малые области поверхности диска испытывали влияние поля в любой момент вращения, что ведет к увеличению плотности записи.

При поворотах коромысла позиционера головки совершают движение по дуге между центром и периферией пластин. Такое движение совместно с вращением пластины позволяет головкам получить доступ ко всей поверхности пластины.Угол между осями позиционера и шпинделяи расстояние от оси позиционера до головок подобраны так, чтобыось головки при поворотах как можно меньше отклонялась от касательной к дорожке.

В более ранних моделях коромысло было закреплено наоси шагового двигателя,ирасстояние между дорожками определялось величиной шага.В современных моделяхиспользуются соленоидные позиционеры с линейным двигателем, который не имееткакой-либо дискретности, а установка на дорожку производится по сигналам, записанным напластинах,чтодаетзначительное увеличение точности привода и плотности записи на дисках.

Обмотку позиционера окружает статор,представляющийсобой постоянный магнит. При подаче вобмоткутока определенной величины и полярности коромысло начинает поворачиваться в соответствующую сторону с соответствующим ускорением. Динамически изменяя ток в обмотке, можно устанавливатьпозиционерв любое положение. Такая система приводаполучила названиеVoiceCoil (звуковая катушка) - поаналогиисдиффузором громкоговорителя. Когда позиционер с шаговым мотором переводит головки на большое расстояние, он продвигает их шагами от дорожки к дорожке. Напротив, соленоидным системам достаточно один раз изменить значение магнитного поля, и головки перемещаются прямо по назначению. Это свойство позволяет соленоидным системам работать значительно быстрее систем с шаговым мотором.

Нахвостовикеобычно расположена так называемая магнитная защелка- маленький постоянныймагнит, который при крайнем внутреннем положении головок (landing zone-посадочная зона) притягивается к поверхности статора и фиксирует коромысло в этомположении.Этотакназываемое парковочное положение головок,которыепри этом лежат на поверхности диска, соприкасаясьс нею. В некоторых моделях для фиксации позиционера предусмотрен специальный электромагнит, якорь которого в свободном положении блокирует движениекоромысла. В посадочной зоне дисков информация не записывается.

Двигатель , вращающий диски, расположен под дисками или встроен в шпиндель. При включении питания, процессор жесткого диска выполняет тестирование электроники, после чего выдает команду включения шпиндельного двигателя. При достижении некоторой критической скорости вращения дисков плотность увлекаемого поверхностями дисков воздуха становится достаточной для преодоления силы прижима головок к поверхности и поднятия их на высоту от долей до единиц микрон над поверхностями пластин – головки “всплывают”. С этого момента и до снижения скорости ниже критической головки держатся на воздушной подушке, не касаясь поверхностей дисков.

После достижения дисками скорости вращения, близкой к номинальной, головки выводятся из зоны парковки, и начинается поиск сервометок для точной стабилизации скорости вращения. Затем выполняется считывание информации из служебной зоны (в частности, таблицы переназначения дефектных участков). В завершение инициализации выполняется тестирование позиционера путем перебора заданной последовательности дорожек. Если тестирование прошло успешно, процессор выставляет на интерфейс признак готовности и переходит в режим работы по интерфейсу.

Во время работыпостоянно работает система слежения за положением головки на диске:изнепрерывно считываемого сигнала выделяется сигнал рассогласования, которыйподается в схему обратной связи, управляющую током обмотки позиционера.Врезультате отклонения головки от центра дорожки в обмотке возникает сигнал, стремящийся вернуть ее на место.

При отключении питания процессор, используя энергию, оставшуюся в конденсаторах платы, либо извлекая энергию из обмоток двигателя, который при этом работает как генератор, выдает команду на установку позиционера в парковочное положение. В некоторых жестких дисках этому способствует помещенное между дисками подпружиненное коромысло, постоянно испытывающее давление воздуха. При ослаблении воздушного потока коромысло дополнительно толкает позиционер в парковочное положение, где тот фиксируется защелкой.

Гермоблок заполнен обычным обеспыленным воздухом под атмосферным давлением. При вращении дисков создается сильный поток воздуха, который циркулирует по периметру гермоблока и постоянно очищается фильтром, установленным на однойиз его сторон. В крышках гермоблоков некоторых жестких дисков специально делаются небольшие отверстия, заклеенныетонкойпленкой, которые служат для выравнивания давления внутрии снаружи. В ряде моделей окно закрывается воздухопроницаемым фильтром.

Внутригермоблока также размещенпредусилитель сигнала, снятого с головок, и их коммутатор. Позиционер соединенс платой предусилителя гибким ленточным кабелем, однако в отдельных винчестерах (в частности - некоторыемодели Maxtor AV) питание обмотки подведено отдельными одножильнымипроводами, которые имеют тенденцию ломаться при активной работе.

У однихмоделейвинчестеровосишпинделяи позиционера закреплены только в одном месте -накорпусе винчестера, у других онидополнительно крепятся винтамик крышке гермоблока. Вторые модели более чувствительны к микродеформации при креплении - достаточно сильной затяжки крепежных винтов, чтобы возникнедопустимыйперекососей. В ряде случаев такой перекос может стать труднообратимым или необратимым совсем.

Плата электроники - съемная, подключается кгермоблоку через один-два разъема различной конструкции. На плате расположены основной процессор винчестера, ПЗУ (постоянное запоминающее устройство) с программой, рабочее ОЗУ, которое обычно используется и в качестве дискового буфера (буфер нужен для согласования скоростей потоков данных на уровне чтения/записи и внешнего интерфейса, его часто ошибочно называют кэшем), цифровой сигнальный процессор (DSP) для подготовки записываемых и обработки считанных сигналов, и интерфейсная логика. На одних винчестерах программа процессора полностью хранится в ПЗУ, на других определенная ее часть записана в служебной области диска. На диске такжемогутбыть записаны параметры накопителя (модель, серийный номер, секторы конфигурации, таблицы дефектов, и т.д.). Некоторыевинчестеры хранят эту информацию в электрически перепрограммируемом ПЗУ (EEPROM).

Многие винчестеры имеют на плате электроники специальный технологический интерфейс с разъемом, через который при помощи стендового оборудования можно выполнять различные сервисныеоперацииснакопителем - тестирование, форматирование, переназначение дефектных участков и т.п.

Жесткий диск посредством шлейфа (40 или 80 жил) соединяется с материнской платой или отдельным контроллером.

1.2. Хранение, запись и чтение данных

Поверхность жесткого диска содержит намагниченные частицы металла. Каждая частица имеет северный и южный полюс. Головка чтения-записи может прикладывать магнитное поле к небольшой группе этих частиц, изменяя их полярность так, что север становится югом и наоборот. Минимальная площадь поверхности диска, которая может сохранять такие изменения магнитного потока, называется магнитным доменом . В то время как диск вращается под головкой, она все время меняет полярность магнитного поля, создавая последовательность изменений полярности на диске.

Данные на жестком диске записываются в виде последовательности двоичных (бинарных) битов (бит – цифра двоичной системы счисления, т.е. “0” или “1”). Каждый бит хранится как магнитный заряд (положительный или отрицательный) на магнитном слое пластины. При записи информации, данные посылаются к жесткому диску в виде последовательности битов. После получения диском данных, используются головки для магнитной записи. В этот момент головка генерирует поток магнитных импульсов, кодирующих данные на поверхности диска. Изменение полярности отвечает значению “1”, а отсутствие изменения – значению “0”. Информация не обязательно хранятся последовательно; например, данные одного файла могут быть записаны в разные местана разных пластинах.

Когда компьютер запрашивает данные, хранящиеся на диске, пластины начинают вращаться, а головки – двигаться, пока не будет найдена область с запрашиваемой информацией. Головка пассивно "парит" над поверхностью диска, и, когда микроскопические магниты, образующие магнитные домены, проходят под ней, они влияют на магнитное поле головки. Электроника дисковода многократно усиливает эти слабые возмущения, превращая их в последовательности нулей и единиц, которые затем поступают в микросхемы памяти компьютера.

Может показаться,что набор из восьми "1" и "0",составляющийодин байт данных, просто записывается в виде восьми последовательных магнитных доменов вдоль дорожкидиска. Это довольно далеко отистинногоположения дел. Слишкоммногоданных пакуется в малуюо6ласть, и если бы в данные не была добавлена дополнительная информация,то существовала бы слишком большая вероятность ошибки. Электроника контроллера должнавыполнить сложную работу. Как контроллеру узнать, какая часть диска проходит подголовками? Ведь если оношибется хотя быв позиции одного магнитного домена, то это может привести к непредсказуемым последствиям.

Ответ заключается в том, чтоконтроллер ориентируется наначало секторов, читаяспециальную информацию, записанную при форматировании диска.Но,когда головка летит над данными сектора, контроллер должен уследить за тысячами доменов, пока онвновь не встретит форматную информацию.Если изменения магнитногопотока носилирегулярный характер,контроллер мог бы легко отслеживать положение головки чтения-записи. Но сектор может быть заполнен нулями,при этом тысячимагнитных доменовпронесутсябезединого изменения магнитного потока, и о6язательно произойдет сбой. Поэтой причине данные должны быть закодированы так, чтобы не встречалось подряд слишком много нулей (отсутствие изменения магнитного потока).

Висходномметодечастотной модуляции (ЧМ) каждый второй магнитный домен отводился под синхроимпульс.Пропадалаполовина дисковогопространства.Потом возникла идея кодировать изменения магнитного потока по отношению кпредыдущемубиту.Врезультатеполучилсяметод модифицированной частотной модуляции (МЧМ).МЧМнетолькоизбавляет от бита синхроимпульса,но и упаковывает на диске вдвое больше данных, чем при ЧМ-кодировании. Существует также кодирование с ограниченным числом повторов (RLL - run length limited). Кодирование с ограниченным числом повторовпереводит данные вспециальные кодовыепоследовательности. Эти коды выбраны за определенные численные характеристики, в особенности за возможное количествовстречающихсяподряднулей.За этим стоит весьма сложная логика, норезультат оченьпрост: на диск удаетсяупаковатьбольшеданных.

2. Что такое форматирование?

Компьютер должен иметь возможность быстро получить доступ к нужной информации. Однако даже самые маленькие диски могут хранить миллионы и миллионы битов. Каким образом компьютер знает где искать необходимые данные? Для решения этой проблемы диск разбивается на части, позволяя проще найти информацию. Базовая форма организации диска называется форматированием . Форматирование подготавливает жесткий диск для чтения и записи данных. Существуют два типа форматирования: физический и логический .

2.1. Физическое форматирование

Жесткий диск перед логическим форматированием должен быть отформатирован физически.Ранние модели винчестеров, как и гибкие диски, изготовлялись с чистыми магнитнымиповерхностями;первоначальнаяразметка(физическое или низкоуровневое форматирование) производилась потребителем поегоусмотрению, и могла быть выполнена любое количество раз. Для современных моделейразметка производится в процессе изготовления;при этом на диски записывается сервоинформация - специальныеметки,необходимые для стабилизации скорости вращения, поиска секторов и слежениязаположением головок на поверхностях. Специальные датчики на головке чтения/записи следят за этими метками; когда они фиксируют сильное изменение поля, контроллер знает, что головка уходит от центра дорожки и изменяет соответст вующим образом величину тока в соленоиде.

Раньше часто для записи сервоинформации использовалась отдельная сервоповерхность (DSS - dedicated servo surface, dedicated - выделенная), при этом целая сторона одной из пластин отдается под серводанные. По этой поверхности настраивались головки всех остальныхповерхностей. Такая систематребовалавысокойжесткости крепления головок, чтобы между ними не возникало расхождений после начальной разметки. Сейчас сервоинформация записывается в промежутках между секторами (embedd ed - встроенная), что позволяет снятьограничениена жесткость подвижной системы. В некоторых моделях применяется комбинированная система слежения - встроенная сервоинформация всочетаниисвыделеннойповерхностью;приэтом грубая настройка выполняется по выделеннойповерхности, а точная - по встроенным меткам.

Поскольку сервоинформация представляет собой опорнуюразметку диска, контроллер винчестера не в состоянии самостоятельновосстановить ее в случае порчи. При программном форматировании такого винчестера возможна только перезапись заголовков и контрольных сумм секторов данных.

При начальной разметке и тестировании современного винчестера на заводе почти всегда обнаруживаются дефектные сектора,которые заносятся в специальную таблицу переназначения. При обычной работе контроллер жесткого диска подменяетэти сектора резервными, которые специально оставляются дляэтой цели на каждойдорожке, группе дорожекили выделенной зоне диска. Благодаря этому новый винчестерсоздает видимость полного отсутствия дефектов поверхности, хотя на самомделеониестьпочти всегда.

Физическое форматирование подразделяет пластины жесткого диска на базовые элементы: дорожки, сектора и цилиндры. По этим элементам определяются адреса, по которым данные читаются и записываются физически.


Каждая сторона пластины разбита на концентрические дорожки . Дорожки идентифицированы числами, начиная с нулевой дорожки на внешней стороне пластины.

Дорожки делятся на сектора , используемые для хранения фиксированного количества данных. Сектора обычно содержат 528 байт информации. 16 байт отводится для служебной информации (адресная информация и контрольная сумма), а остальные 512 байт – для данных. Количество секторов в дорожке не фиксировано из-за разных радиусов и методов записи. Так как физический радиус дорожки варьируется от самого меньшего радиуса внутренней дорожки к наибольшему радиусу внешней, нулевой дорожки, то число секторов в дорожке постепенно повышаетсяот меньших, внутренних дорожек к большим, внешним дорожкам. Однако, это изменение не линейное.

Дорожки на равном расстоянии от центра на всех поверхностях пластин объединяются в цилиндры . Например, третьи дорожки каждой стороны каждой пластины расположены на одном расстоянии от шпинделя. Если представить все эти дорожки соединенными вертикально, то их объединение примет форму цилиндра.

Зоны – группы цилиндров, каждые с одним и тем же количеством дорожек, которые в свою очередь, имеют одинаковое количество секторов. Чтобы минимизировать потери, количество зон, установленных на диске может быть 10 и более.

Таким образом, для доступа к определенному сектору нужно:

1) отвести головки на нужное расстояние от центра, то есть позиционировать на определенный цилиндр;

2) начать просмотр дорожки на нужной пластине, активировав соответствующую головку;

3) производить чтение всей информации до появления заголовка сектора, номер которого (номер содержится в этом заголовке) совпадает с нужным для операции чтения или записи.

В соответствии с такой схемой нахождения необходимой информации на жестком диске такой метод адресации называется CHS-адресацией (Cylinder-Head-Sector). Стороны и головки, нумеруются с 0. Нумерация дорожек такженачинается с 0.Соответственно цилиндр 0 состоит из самых внешних дорожек всехпластин. Какнистранно,нумерация секторов начинается с 1.

Компьютерные аппаратные средства и программное обеспечение часто работают с цилиндрами. Если данные записаны на диск в одном цилиндре, то они могут быть доступны без передвижения головок чтения/записи. А движения головок медленные, по отношению к вращению диска и переключению между головками. Поэтому хранение информации по цилиндрам значительно увеличивает производительность.

Важным понятием является плотность цилиндра . Плотность цилиндра говорит о числе секторов, содержащихся в цилиндре. Она равна числу секторов на дорожке, умноженному на число сторон пластин. Диски с высокой плотностью цилиндра предпочтительнее, поскольку они могут уместить большой файл на меньшем числе цилиндров. При этом при чтении файла понадобится меньше перемещений головок и дисковод будет работать быстрее. Фирмы-производители увеличивают плотность цилиндра, создавая дисководы с большим числом пластин или используя покрытие и электронику, позволяющие достичь больших плотностей данных, что дает большее число секторов на дорожку.

После физического форматирования жесткого диска, магнитные свойства поверхности пластин могут постепенно ухудшаться. В результате чего, становится все сложней и сложней считывать данные с пораженных областей и записывать данные на пораженные области. Сектора, которые не могут больше использоваться для хранения информации, называются сбойными (bad sectors ).

Пораженные области могут образовываться и в других случаях. Сильные вибрации или сбой механики могут вызвать удар головки чтения/записи об оксидное покрытие и оставить на нем углубление. Импульс вращающихся пластин делает это столкновение весьма энергичным. В месте удара головки данные уже не могут быть записаны, а если это место содержало данные, они оказываются потерянными. Но что еще хуже, частицы магнитного материала при ударе освобождаются и получают возможность свободно блуждать внутри дисковода. Эти частицы могут быть много больше, чем зазор между головками и поверхностями пластин; задев такую частицу, головка подлетит вверх и, упав обратно, разрушит новую порцию данных. Иногда частицы прилипают к головке и нарушают ее магнитное поле.

Большинство современных компьютеров могут определять сбойные сектора. Такие сектора просто помечаются и больше не используются.

2.2. Логическое форматирование

После физического форматирования, жесткий диск должен быть отформатирован логически. Логическое форматирование устанавливает файловую систему на диске, позволяя операционным системам (таким как DOS , OS /2, Windows , Linux ) использовать доступное дисковое пространство для хранения данных и доступа к ним. Различные операционные системы используют различные файловые системы, поэтому тип логического форматирования зависит от операционной системы, которую планируется установить.

3. Гибкий диск

Гибкиедиски работают на том же принципе,что и жесткие,но их устройство несколько иное.Головки чтения-записи слегка прижимаютсяк поверхности диска при закрытии дверцы дисковода. Покрытие диска делается толстым,чтобы противостоять трению головок и предохранительного конверта. Так как гибкие диски являются гибкими, они подвержены деформации; размеры диска постоянно меняются с температурой и влажностью. А поскольку дискеты устанавливаются в дисководе на тонкой ступице, они теряютточнуюцентровку.По этим причинам положения дорожек не определены с такой точностью,как на жестком диске. В дисководах гибких дисков используются позиционеры головок с шаговым двигателем, который не следит за положением дорожек, а просто передвигает головку в место предполагаемого нахождения дорожки.Для преодоления этих недостатков на дискете размещают гораздоменьшедорожек,а ширина дорожки больше.

Почему у гибких дисков не бывает аварии головок?На самом деле гибкие диски как бы находятсявпостоянно аварийном состоянии,так как при их вращении головки все время лежат на поверхности.Но аварияподразумевает приложениебольшого усилия к малому участку поверхности диска, а конструкция дисковода гибких дисков исключает это. Дискета вращается медленно, головки имеют большой размер, а сама дискета гибкая. При воздействии на дисковод усилие, передаваемое головке, не увеличивается за счет вращения дискеты; оно приходится на большую площадь, да и сама дискета подается под ударом головки. В результатепрактически нет повреждения.Хотя аварий дискет и не бывает, они все же подвержены износу от трения головки и предохранительного конверта, В котором находится дискета. Вот почему гибкиедискиненаходятсяпостоянновсостояниивращения.

Как и жесткие диски, гибкие получают основной выигрыш в емкости не от упаковки большегоколичестваданныхна дорожку, а от упаковки большего числа дорожек на дискету. Как это ни парадоксально, чем меньше дискета, тем выше плотность дорожек. Уменьшение диаметра означает уменьшение деформаций дискеты. Втулка в жестком пластиковом конверте может точнее отцентрироватьдискету.Сам конверт делает дискету более плоской при вращении, так что она сильно не отклоняется от головок.

Подводя итог,можно сказать, что основой вторичной памяти остаются жесткие диски. Они работают все быстрее и быстрее и вмещают все больше и больше данных. И в них появляются много приспособлений,увеличивающих их надежность и производительность.К сожалению,они по-прежнему представляют угрозу целостности данных. Так как жесткие диски еще долго будут с нами, вы поступите разумно, хорошенько в нихразобравшись.

“Внешняя память на

магнитных лентах и дисках”

Внешняяпамять............................................................................................................................................. 3

Носители на магнитных дисках.................................................................................................................... 3

Гибкие магнитные диски (ГМД).................................................................................................................. 4

Жесткий магнитный диск (ЖМД) ................................................................................................................ 5

Магнитная лента............................................................................................................................................ 6

Запись и считывание информациисмагнитногодиска......................................................................... 7

Внешняяпамять

Внешняя (долговременная) память – это место хранения данных, не используемых в данный момент в памяти компьютера. Внешние накопители имеют собственный корпус и источник питания, что экономит пространство внутри корпуса компьютера и уменьшает нагрузку на его блок питания.

Внешняя память дешевле внутренней, создаваемой обычно на основе полупроводников. Кроме того, большинство устройств внешней памяти может переноситься с одного компьютера на другой. Главный их недостаток в том, что они работают медленнее устройств внутренней памяти.

Традиционно системы хранения можно разделить на следующие три класса:

1. Быстрые системы с произвольным доступом. Это "жесткие диски" Имеют небольшое время доступа и самую высокую удельную стоимость хранения.

  1. Относительно медленные системы с последовательным доступом. Это отдельно стоящие приводы магнитных лент, библиотеки магнитных лент. Обладают наибольшим временем доступа, наибольшей емкостью и наименьшей удельной стоимостью хранения данных. Используются также в системах иерархического хранения данных.
  2. Системы с произвольным доступом, которые по емкости, стоимости, скорости занимают промежуточное положение. Это системы, построенные на базе магнитооптики, DVD и CD (R, RW) технологий. В настоящее время используются для организации небольших архивов и промежуточного хранения, в системах иерархического хранения данных.

Носители на магнитных дисках

Самым распространенным устройством внешней памяти на современных компьютерах стали накопители на магнитных дисках (НМД) или дисководы.

Дисковод – устройство для записи и чтения информации на магнитный диск.

Дисководы подразделяются на:

Гибкие магнитные диски (ГМД) или просто дискеты;

Жесткий магнитный диск (ЖМД) или по-другому винчестер.

Количество секторов на дорожке определяется типом диска и его форматом.Все секторы на одном диске имеют фиксированный размер. Персональные компьютеры могут работать с разными размерами секторов – от 128 до 1024. Стандартом является 512 байт.

Вся работа по считыванию и записи данных на дисках производится только полными секторами. Секторы дорожки, как и сами дорожки на каждой стороне диска, обозначаются присвоенными им номерами, начиная не с нуля, а с единицы (нулевой сектор отводится для целей идентификации, а не для хранения данных).

Дорожки с одинаковыми номерами на различных поверхностях диска (в общем случае пакета диска) образуют цилиндр .Доступ к данным, записанным в одном цилиндре, осуществляется без перемещения магнитных головок, т.к. в накопителе вращается сам диск – головки вдоль дорожек не перемещаются.
Интересно знать, что дискета вращается только при доступе к ней.В отличие от дискеты, жесткий диск вращается непрерывно.

Сочетание всех этих измерений дает нам емкость (размер памяти) диска .

Дискета одного и того же вида может иметь разный формат .

Процедура разметки МД на дорожки и сектора называется форматированием диска.

Гибкие магнитные диски (ГМД)

Дискета или гибкий диск – это компактное низкоскоростное малой ёмкое средство хранения и переноса информации.

Накопители на гибких магнитных дисках (НГМД) позволяют переносить документы и программы с одного компьютера на другой, хранить информацию, не используемую постоянно на компьютере, делать архивные копии программных продуктов, содержащихся на жестком диске.

ГМД делаются из очень мягкого и гибкого материала, миларового пластика с магниточувствительным покрытием из окиси железа. Кстати, немногие знают о том, что первая (рабочая) сторона односторонней дискеты, находится на нижней стороне дискеты, а не на верхней, где расположена наклейка.

ГМД бываютдвух видов:

5,25-дюймовые;

3,5-дюймовые

В компьютерах последних лет выпуска чаще стали использовать накопители для дискет размером 3,5 дюйма (89 мм) и емкостью 0,7 и 1,44 Мбайт. Переход на их использованиебыл в первую очередь связан с бурным развитием портативных компьютеров, в которых нельзя было использовать прежние накопители из-за больших размеров последних.

  1. осевое отверстие, в которое входит дисковод;
  2. окно для считывания и записи, где головка дисковода соприкасается с дискетой.
  3. индексное отверстие, позволяющее дисководу видеть индексное отверстие самой дискеты, обеспечивающее определение начала дорожки;
  4. надрезы снятия напряжения, служащие для предохранения дискеты от перегибов;
  5. вырез защиты от записи, если закрыть этот вырез, на эту дискету нельзя производить запись.

Круглая дискета диаметром 3,5 дюйма, в отличие от 5,25 дюймовых, заключена в жесткий пластмассовый конверт, что значительно повышает её надежность и долговечность, а также создает значительные удобства при транспортировке, хранении и использовании.

Принцип гибкого диска позволяет исправить конкретный сегмент записей, не затрагивая остальной поверхности. Вот почему запись на диске может быть осуществлена частями, каждая из которых вставляется в любое подходящее место. Единственное дополнительное требование состоит в том, чтобы оглавление на диске изменялось в соответствии с изменениями, сделанными на этом диске.

Жесткий магнитный диск (ЖМД)

Накопитель на жестком диске относится к наиболее совершенным и сложным устройствам современного персонального компьютера. Его диски способны вместить многие мегабайты информации, передаваемой с огромной скоростью. В то время, как почти все элементы компьютера работают бесшумно, жесткий диск ворчит и поскрипывает, что позволяет отнести его к тем немногим компьютерным устройствам, которые содержат как механические, так и электронные компоненты.

ЖМД - это не один диск, а пакет ЖМД, сделанных из алюминиевого сплава. Этот пакет заключен вместе с головками чтения-записи в герметичный корпус, следовательно, надежно защищен от пыли и загрязнений, встроен в дисковод и, в отличие от дискет, является несъемным. Герметизация позволяет достичь неплохих технических характеристик - большой емкости (от сотен Мбайт до нескольких Гбайт) и высокого для внешней памяти быстродействия.

Количество дисков в пакете может быть различным - от одного до пяти, количество рабочих поверхностей, соответственно, вдвое больше (по две на каждом диске). Последнее (как и материал, использованный для магнитного покрытия) определяет емкость жесткого диска. Иногда наружные поверхности крайних дисков (или одного из них) не используются, что позволяет уменьшить высоту накопителя, но при этом количество рабочих поверхностей уменьшается и может оказаться нечетным.

Ранние модели винчестеров, как и гибкие диски, изготовлялись с чистыми магнитными поверхностями; первоначальная разметка (форматирование) производилась потребителем по его усмотрению, и могла быть выполнена любое количество раз. Для современных моделей разметка производится в процессе изготовления; при этом на диски записывается сервоинформация - специальные метки, необходимые для стабилизации скорости вращения, поиска секторов и слежения за положением головок на поверхностях.

Информация на внешних носителях имеет файловую структуру .

Файл – это однотипная информация, хранящаяся на внешнем носителе и объединенная общим именем.

Имя файла должно быть уникальным, т.е. не должно повторяться для разных файлов. Список файлов на диске называется каталогом или директорией . Кроме имени файла, в каталоге имеется информация о его размере, дате и времени создания. Каталог можно вывести на экран, чтобы пользователь легко мог выяснить, есть ли на данном диске нужный файл.

Связь между накопителем на жестком магнитном диске и старинным охотничьим ружьем крайне иллюзорна и сводится всего-навсего к совпадению обозначений. Дело в том, что первый загерметизированный жесткий диск, разработанный фирмой IBM в 1973 г., имел 30 цилиндров (по 30 дорожек на каждой поверхности), а каждая дорожка – 30 секторов. Вот почему первый накопитель получил обозначение 30/30, как калибр винтовки «винчестер».

Магнитная лента

Накопитель на магнитной ленте (стример)состоит из полоски плотного вещества, на которую напыляется слой ферромагнетиков. Именно на этот слой “запоминается” информация.

По виду ленточные картриджи похожи на аудиокассеты, но предназначены для цифровой записи. Плотность записи в них выше, чем у аудиокассет, а ленты подвергаются специальному тестированию. Они используются при создании резервных копий для систем на жестких дисках. Цифровые аудиоленты также используются в качестве средства резервирования. При этом в кассете меньшего размера, чем аудиокассета, может храниться до миллиарда байт данных. Все типы ленточных запоминающих устройств имеют один основной недостаток – последовательный режим работы, т.е. лента должна прокручиваться до нужного элемента, что отнимает много времени. Требование экономии времени вынуждает пользователя обращаться к другому, более популярному средству хранения информации для небольших компьютеров, – гибкому диску, или дискете.

Процесс записипохож на процесс записи на виниловые пластинки - при помощи магнитной индукционной вместо специального аппарата.

На головку подаётся ток, который приводит в действие магнит. Запись звука на плёнку происходит благодаря действию электромагнита на плёнку. Магнитное поле магнита меняется в такт со звуковыми колебаниями, и благодаря этому маленькие магнитные частички (домены) начинают менять своё местоположение на поверхности плёнки в определённом порядке, в зависимости от воздействия на них магнитного поля, создаваемого электромагнитом.

А при воспроизведении записи наблюдается процесс обратный записи: намагниченная лента возбуждает в магнитной головке электрические сигналы, которые после усиления поступают дальше в динамик.

Данные, используемые в компьютерной технике, записываются на магнитные носители таким же образом, с той разницей, что для данных нужно меньше места на плёнке, чем для звука. Просто вся информация, записываемая на магнитный носитель в компьютерах, записывается в двоичной системе - если при чтении с носителя головка “чувствует” нахождение под собой домена(домен – частица-стрелка магнитного покрытия), то это означает, что значение данной частички данных равно “ 1” , если не “чувствует”, то значение - “ 0” . А дальше уже система компьютера преобразует данные, записанные в двоичной системе, в более понятную для человека систему.

Традиционно магнитные ленты были и остаются наименее дорогим и достаточно надежным (сохранность записи более 30 лет) носителем для организации архивов и резервного копирования данных. Однако их слабой сторонойявляется последовательный доступ к информации.

Несмотря на то, что приводов магнитных лент и картриджей разной конструкции достаточно много, базовых технологий, используемых во всех устройствах, всего две. Это линейная запись (запись с неподвижной магнитной головкой) и наклонно-строчная запись . Оба метода пришли из аналоговой магнитной записи.

Линейная система записи имеет свои характерные особенности. Чтобы обеспечить необходимую плотность записи лента должна двигаться мимо магнитной головки со скоростью порядка 160 дюймов/с (порядка 70 см/с). Чем быстрее достигается рабочая скорость движения ленты, тем меньше задержек при неизбежном старт-стопном движении ленты. Поэтому, чем более быстродействующий лентопротяжный механизм, тем больше механическая нагрузка на ленту и применение современных тонких лент AME в этом случае недопустимо.

Наклонно-строчная запись появилась позже, чем линейная. Поэтому с самого начала в основе были заложены более прогрессивные технологические решения. В результате те же объемы записываются на гораздо меньшей площади поверхности ленты. Преимущества устройств, построенных на базе наклонно-строчной записи в том, что сами устройства компактнее, картриджи меньше, используется более совершенная магнитная лента, позволяющая хранить больше данных более длительное время.

Запись и считывание информациисмагнитногодиска

Записи и считывания информации осуществляются с помощью магнитных головок плавающего типа. Они крепятся на рычагах, которые перемещаются по радиусу диска с помощью специального следящего привода.

Плотность записи – это количество элементов двоичной памяти на единицу длины носителя.

Плотность записи определяется величиной зазора между диском и магнитной головкой, а от стабильности зазора зависит качество записи (считывания). Для повышения плотности записи необходимо уменьшить зазор, однако при этом значительно повышаются требования к рабочей поверхности дисков. При малом зазоре и больших погрешностях в макро геометрии поверхности имеют место значительные колебания амплитуды сигнала воспроизведения. Для надежной работы накопителя на гибких магнитных дискахнеобходимо обеспечить шероховатость поверхности не более Ra=0,22 мкм и минимальные микрогеометрические отклонения. Торцевое биение диска при вращении с чистотой 30 об/с не должно превышать 0,3 мм, а удельная неплоскостность 0,7 мкм на длине 10 мм. Выполнение этих требований представляет значительные трудности.

Основными этапами технологического процесса изготовления магнитного диска являются получение заготовки, подготовка поверхности, терморихтование, токарная обработка, нанесения магнитного покрытия, уравновешивание, контроль.

Развитие технологии записи на магнитный диск

Владимир Леонов

Несомненно, одним из наиболее успешных технологических проектов последних десятилетий является жесткий диск. Появившись в середине 50-х годов прошлого века, жесткий диск с середины 80-х стал неотъемлемой частью персонального компьютера. За годы применения жестких дисков установлены впечатляющие рекорды увеличения емкости и производительности, уменьшения физических размеров и стоимости. В настоящее время жесткий диск является основным устройством хранения информации в компьютере и активно внедряется в бытовую электронику.

ервое устройство хранения данных с произвольным доступом, позднее названное жестким диском, или винчестером, было выпущено компанией IBM в 1956 году. Устройство имело емкость 5 Мбайт, а данные записывались на 50 дисков диаметром 24 дюйма, вращавшихся со скоростью 1200 об./мин. Среднее время доступа равнялось одной секунде, а плотность записи - 2 Кбит/кв.дюйм. Размеры устройства были сравнимы с размером двух домашних холодильников, а его стоимость составляла 50 тыс. долл. С этих исходных характеристик и началось бурное развитие жестких дисков.

В 1980 году компания Seagate выпустила первый жесткий диск, с пластинами диаметром 5,25 дюйма, предназначенный для установки в персональные компьютеры и имевший емкость 5 Мбайт.

Среди параметров жесткого диска существует один, изменение которого влияет на все остальные параметры, - это плотность записи информации на диск. Увеличение плотности записи ведет к росту количества данных на пластине, что равносильно увеличению емкости жесткого диска при заданных размерах и количестве пластин либо уменьшению количества пластин и габаритов привода при заданной емкости.

Влияние плотности записи на работу жесткого диска проявляется различными способами. Во-первых, более плотное расположение данных позволяет считать больше информации за один оборот диска, а во-вторых, с уменьшением размеров пластин головка проходит меньшее расстояние при поиске нужной дорожки, что приводит к сокращению времени доступа к данным. Начав свой рост с 2 Кбит/кв.дюйм у первого жесткого диска (рис. 1), к настоящему времени плотность записи достигла 70 Гбит/кв.дюйм у коммерческих продуктов и превысила 100 Гбит/кв.дюйм у лабораторных образцов жестких дисков.

Плотность записи зависит от размеров отдельных битов и определяется двумя параметрами: плотностью расположения дорожек записи и размером бита вдоль дорожки (см. таблицу).

Для дальнейшего повышения плотности записи и общей емкости дисковых накопителей необходимо и далее уменьшать размеры отдельных битов и размещать их как можно ближе друг к другу. Однако здесь начинают действовать ограничения. Если сделать единичный участок хранения слишком маленьким, его магнитная энергия станет настолько ничтожной, что со временем может совсем исчезнуть из-за теплового движения частиц, и тогда информация потеряется. Данное явление носит название «суперпарамагнетизм». Во избежание последствий этого явления необходимо повысить коэрцитивную силу материала магнитного слоя диска. Это, в свою очередь, потребует повышения напряженности записывающего магнитного поля, которое обеспечивается улучшением конструкции головки и уменьшением зазора между головкой и магнитным слоем.

На протяжении всего периода развития жесткого диска появлялись работы, в которых предсказывался предел увеличения плотности записи на магнитный диск. Так, в начале 70-х годов прошлого века исследователи называли предел около 10 Мбит на 1 кв.дюйм. В настоящее время считается, что для применяемой сегодня технологии продольной записи (рис. 2) такой предел составляет 100-200 Гбит на 1 кв.дюйм.

Продольная магнитная запись характеризуется тем, что северный и южный полюса намагниченного участка располагаются вдоль поверхности магнитного диска, то есть рабочий слой перемагничивается вдоль движения.

Плотность записи в лабораторных образцах жестких дисков, использующих продольную магнитную запись, практически достигла теоретического предела, и, хотя этот предел отодвигался неоднократно, большинство исследователей считают, что в ближайшие несколько лет произойдет переход на другую технологию записи. В качестве наиболее вероятной называется перпендикулярная технология магнитной записи (рис. 3), характеризующаяся тем, что северный и южный полюса намагниченного участка располагаются перпендикулярно поверхности магнитного диска. Такое направление поля обеспечивается конструкцией записывающей головки.

Технология перпендикулярной магнитной записи известна довольно давно и активно исследовалась в 70-80-х годах; была даже сделана попытка ее коммерческого применения. Технология перпендикулярной магнитной записи применялась во флоппи-дисководах емкостью 2,88 Мбайт, но они не получили широкого распространения из-за высокой стоимости дискет.

Перпендикулярная запись часто рассматривалась как альтернатива продольной записи, но в промышленных масштабах переход на нее был нецелесообразен, так как при плотностях записи, с которыми может работать продольная запись, возможности этих технологий примерно равны, а стоимость перпендикулярной технологии немного выше. Сегодня переход на технологию перпендикулярной записи обусловливается тем, что ее технологические особенности позволяют достичь более высоких плотностей записи. При магнитной записи каждый бит образует магнитный домен, состоящий из определенного количества (сейчас около 100) магнитных зерен. Поскольку из-за особенностей взаимодействия двух соседних битов при перпендикулярной записи оптимальная толщина рабочего слоя немного больше, чем при продольной записи, необходимое количество магнитных зерен займет меньшую площадь.

Более эффективная геометрия магнитного поля, создаваемого головкой, позволяет увеличить плотность энергии магнитного поля в рабочем слое примерно в четыре раза.

Кроме того, разноименные полюса намагниченных и ненамагниченных участков расположены на противоположных сторонах рабочего слоя носителя. Поэтому магнитные поля от соседних ненамагниченных участков будут стабилизировать состояние намагниченного участка. Это позволяет заметно уменьшить минимальные размеры стабильных доменов.

По расчетам специалистов компании Seagate, перпендикулярная запись позволит достичь плотности записи 1 Тбит на 1 кв.дюйм, что эквивалентно возможности записать более 1 Тбайт информации на стандартный трехдюймовый диск. Для наглядности приведем несколько цифр. Так, если распечатать 1 Гбайт текстовой информации с плотностью 2500 символов на страницу, то высота получившейся стопки бумаги составит около 40 м. Для обеспечения плотности записи 1 Тбит на 1 кв.дюйм необходимо достичь плотности расположения дорожек 500 тыс. на 1 дюйм и линейной плотности 2 млн. бит данных на 1 дюйм дорожки. При такой плотности на срезе бумажного листа помещаются 2 тыс. дорожек или 8 тыс. бит данных.

Приведенные цифры намного превышают те, что могут предложить сегодняшние дисковые накопители, однако и этих показателей плотности, принимая во внимание прогнозируемые потребности в хранении данных в будущем, очень скоро может оказаться недостаточно. Так, согласно докладу Калифорнийского университета в Беркли, ежегодно в мире производится от 1 до 2 экзабайт (1 экзабайт эквивалентен миллиарду гигабайт) информации на самых разных носителях, включая магнитные, бумажные, пленочные и оптические. Не следует забывать и о том, что на магнитные носители постепенно переводятся документы традиционного вида - бумажные и пленочные, а кроме того, возрастают потребности бытовой электроники. Поэтому инженерам уже сейчас приходится искать новые, еще более перспективные технологии записи и хранения информации.

В качестве наиболее вероятных кандидатов здесь рассматриваются термомагнитная запись HAMR (Heat Assisted Magnetic Recording) и так называемые самоорганизующиеся магнитные решетки - SOMA (Self-Ordered Magnetic Arrays), однако на разработку этих технологий могут уйти еще годы.

Технология термомагнитной записи (рис. 4) похожа на технологию, используемую в магнитооптических приводах. При записи в обоих случаях используется зависимость магнитных свойств рабочего слоя от температуры. Разница между технологиями проявляется в способе чтения информации с диска. В магнитооптических приводах информация считывается лучом лазера, работающего на меньшей, чем при записи, мощности, а в термомагнитной записи информация считывается магнитной головкой так же, как в обычном жестком диске.

Запись информации осуществляется путем нагрева участка рабочего слоя, находящегося в магнитном поле записывающей головки. Нагревание производится кратковременным воздействием лазерного луча - длительность импульса лазера меньше длительности магнитного импульса. Магнитное поле подбирается с таким расчетом, чтобы при отсутствии нагрева его величина была недостаточной для перемагничивания рабочего слоя. При повышении температуры участка рабочего слоя происходит существенное изменение его магнитных свойств: например, может в 3-4 раза уменьшаться коэрцитивная сила. Это приводит к тому, что нагретые участки перемагничиваются. Подобные области и представляют собой записанную информацию.

Для термомагнитной записи используются материалы с высокой коэрцитивной силой, что обеспечивает высокую стабильность записанных участков. Минимальные размеры области, соответствующей одному биту информации, определяются диаметром сфокусированного светового луча.

По оценкам специалистов компании Seagate, термомагнитная запись позволит достичь плотности записи 10 Тбит на 1 кв.дюйм.

Запись информации на магнитные носители происходит по концентрическим дорожкам. Дорожки разбиты на секторы (512 байт для дискеты). Обмен данными между НМД и оперативной памятью осуществляется последовательно секторами (кластерами).

Поверхность жесткого диска рассматривается как трехмерная матрица, измерениями которой являются номера поверхности, номер цилиндра (номер дорожки) и номер сектора. Под цилиндром понимается совокупность всех дорожек, принадлежащих разным поверхностям и находящихся на равном удалении от оси вращения. Данные о том, в каком месте диска записан тот или иной файл, хранятся в системной области диска.

На каждом диске можно выделить две области: системную и данных .

I. Системная область диска состоит из трех участков:

1. Главная загрузочная запись (MBR – Master Boot Record), самый первый сектор диска, в котором описывается структура диска: какой раздел (логический диск) является системным, сколько разделов на этом диске, какого они объема;

2. Таблица размещения файлов (FAT – File Allocation Table). Количество ячеек FAT соответствует количеству кластеров на диске (они нумеруются от 2 до N+1, где N – полное число кластеров на диске). Значениями ячеек является шестнадцатеричный код, по которому можно судить состояние кластера: либо он дефектный (код FFF1-FFF7), либо он свободен (0000), либо используется файлом (код соответствует номеру кластера, где продолжается текущий файл 0002-FFF0), либо содержит последнюю часть файла (FFF8-FFFF).

3. Корневой каталог диска – список файлов и подкаталогов с их параметрами.

II. В области данных расположены подкаталоги и сами данные. На жестком диске системная область создается на каждом логическом диске.

На жестком диске кластер является минимально адресуемым элементом. Размер кластера, в отличие от размера сектора, строго не фиксирован (от 512 байт до 64 Кбайт). Обычно он зависит от типа используемой файловой системы и от емкости диска. Кластеры нумеруются в линейной последовательности (от первого кластера нулевой дорожки до последнего кластера последней дорожки).

Физически, кластеры, выделяемые одному файлу, могут находиться в любом свободном месте дисковой памяти и необязательно являются смежными. Файлы, хранящиеся в разбросанных по диску кластерах, называются фрагментированными.

Например, Файл_1 может занимать кластеры 34, 35 и 47, 48, а Файл_2 - кластеры 36 и 49.

Например, для двух рассмотренных выше файлов табли­ца FAT с 1-й по 54-ю ячейку принимает следующий вид:

Цепочка размещения для файла Файл_1 выглядит сле­дующим образом: в начальной 34-й ячейке FAT хранится адрес следующего кластера (35), соответственно, в следую­щей 35-й ячейке хранится 47, в 47-й - 48, в 48-й - знак конца файла (К).


Операционные системы MS-DOS, OS/2, Windows 95 и другие используют файловую систему на основе таблиц размещения файлов (FAT-таблицы File Allocation Table ), состоящих из 16-разрядных полей. Такая файловая система называется FAT16. Она позволяет разместить в FAT-таблицах не более 65 536 записей (2 16) о местоположении единиц хранения данных. Для дисков объемом от 1 до 2 Гбайт длина кластера составляет 32 Кбайт (64 сектора). Это не вполне рациональный расход рабочего пространства, поскольку любой файл (даже очень маленький) полностью оккупирует весь кластер, которому соответствует только одна адресная запись в таблице размещения файлов. Даже если файл достаточно велик и располагается в нескольких кластерах, все равно в его конце образуется некий остаток, нерационально расходующий целый кластер.

Начиная с Windows 98 операционные системы семейства Windows (Windows 98, Windows Me, Windows 2000, Windows XP) поддерживают более совершенную версию файловой системы на основе FAT-таблиц - FAT32 с 32-разрядными полями в таб­лице размещения файлов. Для дисков размером до 8 Гбайт эта система обеспечи­вает размер кластера 4 Кбайт (8 секторов).

Операционные системы Windows NT и Windows ХР способны поддерживать совер­шенно другую файловую систему - NTFS. В ней хранение файлов организовано иначе - служебная информация хранится в Главной таблице файлов (MFT). В сис­теме NTFS размер кластера не зависит от размера диска, и, потенциально, для очень больших дисков эта система должна работать эффективнее, чем FAT32. Однако с учетом типичных характеристик современных компьютеров можно говорить о том, что в настоящее время эффективность FAT32 и NTFS примерно одинакова.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то