Основы сетевых технологий и высокоскоростной передачи данных. П3: Прямое последовательное расширение спектра

ФЕДЕРАЛЬНОЕ АГЕНСТВО СВЯЗИ

Учебное пособие. Часть 1.

Москва 2008
ФЕДЕРАЛЬНОЕ АГЕНСТВО СВЯЗИ

Московский технический университет связи и информатики

Кафедра мультимедийных сетей и услуг связи

^ Основы сетевых технологий и высокоскоростной передачи данных

Учебное пособие

для студентов, обучающихся по специальностям 230101, 230105, 210406

Беленькая М.Н., доцент

Яковенко Н.В., доцент
Рецензенты профессор, д.т.н. Минкин М.А.

доцент, к.т.н. Попова А.Г.
Утверждено методическим советом МТУСИ в качестве учебного пособия.

Протокол № 1 от 14.09.2008 г.

Москва 2008

Предисловие

В учебном пособии рассматриваются основные аспекты высокоскоростной передачи данных, сетевых технологий и взаимодействия вычислительной техники. Для успешного понимания изложенного материала студенты должны обладать знаниями по основам вычислительной техники, архитектуре ЭВМ, операционным системам, кодированию сигналов и кодированию информации, кабельным системам, основам телекоммуникаций.


  • дать понимание основных технологий высокоскоростной связи между вычислительными системами, соответствующих стандартов и протоколов, предоставить актуальную на момент написания пособия информацию по развивающимся направлениям передачи данных;

  • научить применять накопленные до нас знания и искать актуальную информацию;

  • научить пользоваться телекоммуникационными стандартами и рекомендациями ведущих мировых производителей в области высокоскоростной передачи данных;

  • научить пользоваться профессиональным языком и различными компьютерными и телекоммуникационными терминами.
Учебное пособие рекомендуется студентам, собирающимся специализироваться в области руководства сетевыми проектами, администрирования телекоммуникационных систем, программирования сетевой аппаратуры, системного программирования и системной интеграции, создания и сопровождения корпоративных и ведомственных сетей передачи данных.

^ Глава 1. Исторические предпосылки развития высокоскоростных сетей передачи данных

Анализируя исторический опыт создания и развития сетевых технологий высокоскоростной передачи информации, следует отметить, что главным фактором, который обусловил появление этих технологий, является создание и развитие средств вычислительной техники. В свою очередь, стимулом к созданию средств вычислительной техники (электронных компьютеров) стала вторая мировая война. Для расшифровки закодированных сообщений немецких агентов требовалось огромное количество вычислений, и их нужно было произвести сразу после радиоперехвата. Поэтому, британское правительство основало секретную лабораторию для создания электронного компьютера под названием COLOSSUS. В создании этой машины принимал участие знаменитый британский математик Алан Тьюринг, и это был первый в мире электронный цифровой компьютер.

Вторая мировая война повлияла на развитие компьютерной техники и в США. Армии нужны были таблицы стрельбы, которые использовались при нацеливании тяжелой артиллерии. В 1943 году Джон Моушли и его студент Дж. Преспер Экерт начали конструировать электронный компьютер, который они назвали ENIAC (Electronic Numerical Integrator and Computer - электронный цифровой интегратор и калькулятор). Он состоял из 18 000 электровакуумных ламп и 1500 реле. ENIAC весил 30 тонн и потреблял 140 киловатт электроэнергии. У машины было 20 регистров, каждый из которых мог содержать 10-разрядное десятичное число.

После войны Моушли и Экерту позволили организовать школу, где они рассказывали о своей работе коллегам-ученым. Вскоре и другие исследователи взялись за конструирование электронных вычислительных машин. Первым рабочим компьютером был EDS АС (1949 год). Эту машину сконструировал Морис Уилкс в Кембриджском университете. Далее появился JOHNIAC - в корпорации Rand, ILLIAC - в Университете Иллинойса, MANIAC - в лаборатории Лос-Аламоса и WEIZAC - в Институте Вайцмана в Израиле.

Экерт и Моушли вскоре начали работу над машиной EDVAC (Electronic Discrete Variable Computer – электронная дискретная параметрическая вычислительная машина), затем последовала разработка UNIVAC (первая электронная серийная вычислительная машина). В 1945 году к их работе был привлечен Джон фон Нейман, создавший принципы работы современной вычислительной техники. Фон Нейман осознал, что создание компьютеров с большим количеством переключателей и кабелей требует длительного времени и очень утомительно. Он пришел к мысли, что программа должна быть представлена в памяти компьютера в цифровой форме вместе с данными. Он также отметил, что десятичная арифметика, используемая в машине ENIAC, где каждый разряд представлялся 10 электронными лампами (1 лампа включена, 9 – выключены), должна быть заменена бинарной арифметикой. Машина фон Неймана состояла из пяти основных частей: памяти - RAM, процессора - CPU, вторичной памяти – магнитные барабаны, ленты, магнитные диски, устройства ввода – чтение с перфокарт, устройства вывода информации – принтер. Именно необходимость передавать данные между частями такой ЭВМ послужила стимулом развития высокоскоростной передачи данных и организации компьютерных сетей.

Первоначально для передачи данных между компьютерами использовались перфоленты и перфокарты, затем магнитные ленты и съемные магнитные диски. В дальнейшем появилось специальное математическое обеспечение (софт) – операционные системы, позволяющие многим пользователям с различных терминалов пользоваться одним процессором, одним принтером. При этом терминалы большой машины (мейнфрейм) могли быть удалены от нее на весьма ограниченное расстояние (до 300-800м). С развитием операционных систем появилась возможность присоединять терминалы к мейнфреймам при помощи телефонных сетей общего пользования с увеличением и числа терминалов и соответствующих расстояний. При этом никаких общих стандартов не существовало. Каждый производитель больших компьютеров разрабатывал свои правила (протоколы) присоединения и, таким образом, выбор производителя и технологии передачи данных для пользователя становился пожизненным.

Появление интегральных микросхем с низкой стоимостью привело к тому, что компьютеры стали меньше по размерам, доступнее по цене, мощнее и специализированнее. Компании уже могли позволить себе иметь несколько компьютеров, предназначенных для различных подразделений и задач и выпущенных различными производителями. В связи с этим появилась новая задача: соединение групп компьютеров между собой (Interconnection). Самыми первыми компаниями, которые эти «островки» соединили, были IBM и DEC. Протоколом системы передачи данных у DEC был DECNET, который сегодня уже не применяется, а у IBM – SNA (System Network Architecture – первая сетевая архитектура передачи данных для компьютеров серии IBM 360). Однако компьютеры одного производителя все еще ограничивались соединением с себе подобными. При присоединении компьютеров другого производителя использовалась программная эмуляция для имитации работы нужной системы.

В 60-х годах прошлого века правительство США поставило задачу обеспечения передачи информации между компьютерами различных организаций и осуществило финансирование разработки стандартов и протоколов обмена информацией. За реализацию поставленной задачи взялось ARPA – агентство по исследованиям министерства обороны США. В результате удалось разработать и внедрить компьютерную сеть ARPANET, с помощью которой были соединены федеральные организации США. В этой сети были внедрены протоколы TCP/IP и технология связи сегментов сетей министерства обороны США (DoD) Internet – Интернет.

Появившиеся в 80-х годах персональные компьютеры стали объединять в локальные сети (LAN – Local Area Network).

Постепенно появляется все больше производителей оборудования и соответственно математического обеспечения (МО), проводятся активные разработки в области взаимодействия оборудования различных производителей. В настоящее время сети, включающие оборудование и МО различных производителей, называют гетерогенными сетями (разнородными). Необходимость “понимать” друг друга приводит к необходимости создания не корпоративных правил передачи данных (например, SNA), а общих для всех. Появляются организации, создающие стандарты передачи данных, определяются правила, по которым могут работать частные клиенты, телекоммуникационные компании, правила объединения гетерогенных сетей. К таким международным стандартизирующим организациям относятся, например:


  • ITU-Т (МСЭ-Т – сектор стандартизации электросвязи международного союза электросвязи, преемник МККТТ);

  • IEEE (институт инженеров электротехники и электроники);

  • ISO (международная организация по стандартизации);

  • EIA (альянс отраслей электронной промышленности);

  • TIA (ассоциация телекоммуникационной промышленности).
Параллельно не прекращают разработки и частные компании (например, компания Xerox разработала технологию Ethernet, а компания СISCO – технологию 1000Base-LH и MPLS).

C удешевлением технологий организации и компании получили возможности объединять свои компьютерные островки, находящиеся на различном удалении (в разных городах и даже континентах), в свою частную - корпоративную сеть . Корпоративная сеть может строиться на основе международных стандартов (ITU-Т) или стандартов одного производителя (IBM SNA).

При дальнейшем развитии высокоскоростной передачи данных стало возможным объединять в одну сеть различные организации и подключать к ней не только членов какой-то одной компании, а любое лицо, выполняющее определенные правила доступа. Такие сети называются глобальными . Заметим, что корпоративная сеть – это сеть, которая не является открытой для любого пользователя, глобальная сеть, напротив, открыта для любого пользователя.

Выводы

В настоящий момент практически все сети являются гетерогенными. Информация рождается на базе корпоративных сетей. Основные объемы информации циркулируют там же. Отсюда необходимость их изучения и умения реализовывать такие сети. Однако доступ к информации все больше открывается различным пользователям, свободным от конкретной корпорации, и отсюда необходимость уметь реализовывать глобальные сети.

^ Дополнительная информация

www.computerhistory.org

Контрольные вопросы

1. Сеть компании IBM, чьи представительства есть в Чикаго, Барселоне, Москве, Вене является:

А) глобальной

В) корпоративной

С) гетерогенной

D) все предыдущие определения справедливы

2. Целью создания компьютерной сети организации является (укажите все правильные ответы):

А) разделение пользователям ресурсов сети, независимо от их физического расположения;

В) совместное использование информации;

С) интерактивные развлечения;

D) возможность электронного делового общения с другими компаниями;

E) участие в системе диалоговых сообщений (чатов).
^ Глава 2. Эталонная модель взаимодействия открытых систем ЭМВОС (Open System Interconnection - модель OSI)

В 1977 году Международная организация по стандартизации (МОС, ISO), состоящая из представителей индустрии информационных и телекоммуникационных технологий, создала комитет по разработке коммуникационных стандартов в целях обеспечения универсального взаимодействия программных и аппаратных средств множества производителей. Результатом его работы стала эталонная модель взаимодействия открытых систем ЭМВОС. Модель определяет уровни взаимодействия в компьютерных сетях (Рис. 1), описывает функции, которые выполняются каждым уровнем, но не описывает стандарты на выполнение этих задач.

Рис. 2.1. Уровни взаимодействия в сети в соответствии с ЭМВОС (OSI)

Поскольку различные компьютеры имеют различные скорости передачи данных, различные форматы данных, различные типы разъемов, разные способы хранения и доступа к данным (методы доступа), разные операционные системы и организацию видов памяти, то возникает масса не очевидных проблем их соединения. Все эти проблемы классифицировали и распределили по функциональным группам – уровням ЭМВОС.

Уровни организуются в виде вертикального стека (Рис.2.2). Каждый уровень выполняет некоторую группу близких функций, требуемых для организации связи компьютеров. В реализации более примитивных функций он полагается на нижележащий уровень (пользуется его услугами) и не интересуется подробностями этой реализации. Кроме того, каждый уровень предлагает услуги вышестоящему уровню.

Пусть прикладной процесс пользователя, который выполняется в оконечной системе «А», обращается с запросом к прикладному уровню (Application), например, к файловой службе. На основании этого запроса программное обеспечение прикладного уровня формирует сообщение стандартного формата, которое обычно состоит из заголовка (header) и поля данных. Заголовок содержит служебную информацию, которую надо передать через сеть прикладному уровню другого компьютера (оконечная система «В»), чтобы сообщить ему, какие действия требуется выполнить. Например, заголовок должен содержать информацию о местонахождении файла и о типе операции, которую необходимо над ним выполнить. Поле данных может быть пустым или содержать какие-либо данные, например те, которые надо записать в удаленный файл. Для того чтобы доставить эту информацию по назначению, предстоит решить много задач. Но за них несут ответственность другие нижележащие уровни.

Рис.2.2. Архитектура процессов в сети в соответствии с ЭМВОС

Сформированное сообщение прикладной уровень направляет вниз по стеку представительному уровню (Presentation). Программный модуль представительного уровня на основании информации, полученной из заголовка прикладного уровня, выполняет требуемые действия и добавляет к сообщению свою служебную информацию – заголовок представительного уровня, в котором содержатся указания для модуля представительного уровня компьютера – получателя. Сформированный блок данных передается вниз по стеку сеансовому уровню (Session), который в свою очередь добавляет свой заголовок и т.д. Когда сообщение достигает нижнего физического уровня (Physical), оно «обрастает» заголовками всех уровней. Физический уровень обеспечивает передачу сообщения по линии связи, то есть через физическую среду передачи.

Когда сообщение поступает на компьютер – получатель, оно принимается физическим уровнем и последовательно перемещается вверх по стеку с уровня на уровень. Каждый уровень анализирует и обрабатывает свой заголовок, выполняет свои функции, затем удаляет этот заголовок и передает оставшийся блок данных смежному вышележащему уровню.

Правила (спецификации), по которым взаимодействуют компоненты систем, называются протоколами . В модели ЭМВОС различают два основных типа протоколов. В протоколах с установлением соединения (connection-oriented network service) перед обменом данными отправитель и получатель (сетевые компоненты одного уровня в удаленных системах) должны сначала установить логическое соединение и, возможно, выбрать протокол, который будут использовать. После завершения диалога они должны разорвать соединение. В протоколах без предварительного установления соединения (connectionless network service) отправитель просто передает данные. Эти протоколы также называются дейтаграммными .

Иерархически организованный набор протоколов, достаточный для организации взаимодействия узлов в сети, называется стеком коммуникационных протоколов .

Для обозначения блока данных, с которым имеют дело модули определенного уровня, в модели ЭМВОС используется общее название протокольный блок данных (Protocol Data Unit, PDU). В то же время блок данных определенного уровня имеет и специальное название (Рис.2.3).


7

Прикладной

Сообщение (Message)

6

Представительный

Пакет (Packet)

5

Сеансовый

Пакет (Packet)

4

Транспортный

Пакет (Packet)

Сегмент (Segment)


3

Сетевой

Пакет (Packet)

Дейтаграмма (Datagram)


2

Канальный

Кадр, фрейм (Frame)

1

Физический

Бит (Bit)

Рис.2.3. Уровни ЭМВОС и протокольные блоки данных

Кратко рассмотрим функции, отнесенные к разным уровням ЭМВОС.

^ Физический уровень

Обеспечивает передачу потока бит в физическую среду передачи информации. В основном определяет спецификацию на кабель и разъемы, т.е. механические, электрические и функциональные характеристики сетевой среды и интерфейсов.

На этом уровне определяется:

Физическая среда передачи – тип кабеля для соединения устройств;

Механические параметры – количество пинов (тип разъема);

Электрические параметры (напряжение, длительность единичного импульса сигнала);

Функциональные параметры (для чего используется каждый пин сетевого разъема, как устанавливается начальное физическое соединение и как оно разрывается).

Примерами реализации протоколов физического уровня являются RS-232, RS-449, RS-530 и множество спецификаций МСЭ-Т серии V и X (например, V.35, V.24, X.21).

^ Канальный уровень

На этом уровне биты организуются в группы (фреймы, кадры). Кадр – это блок информации, имеющий логический смысл для передачи от одного компьютера другому. Каждый кадр снабжается адресами физических устройств (источника и получателя), между которыми он пересылается.

Протокол канального уровня локальной сети обеспечивает доставку кадра между любыми узлами (node) этой сети. Если в локальной сети используется разделяемая среда передачи, протокол канального уровня выполняет проверку доступности среды передачи, то есть реализует определенный метод доступа в канал передачи данных.

В глобальных сетях, которые редко обладают регулярной топологией, канальный уровень обеспечивает обмен кадрами между соседними в сети узлами, соединенными индивидуальной линией связи.

Кроме пересылки кадров с необходимой синхронизацией канальный уровень выполняет контроль ошибок, контроль соединения и управление потоком данных. Начало и конец каждого кадра обозначаются специальной битовой последовательностью (например, флаг – 01111110). Каждый кадр содержит контрольную последовательность, которая позволяет принимающей стороне обнаруживать возможные ошибки. Канальный уровень может не только обнаруживать, но и исправлять поврежденные кадры за счет повторной передачи.

В заголовке канального уровня содержится информация об адресах взаимодействующих устройств, типе кадра, длине кадра, информация для управления потоком данных и сведения о протоколах вышестоящего уровня, принимающих пакет, размещенный в кадре.

^ Сетевой уровень

Основной задачей этого уровня является передача информации по сложной сети, состоящей из множества островков (сегментов). Внутри сегментов могут использоваться совершенно разные принципы передачи сообщений между конечными узлами – компьютерами. Сеть, состоящую из многих сегментов, мы называем Интернет.

Передача данных (пакетов) между сегментами выполняется при помощи маршрутизаторов (router, роутер). Можно представить себе маршрутизатор как устройство, в котором функционируют два процесса. Один из них обрабатывает приходящие пакеты и выбирает для них по таблице маршрутизации исходящую линию. Второй процесс отвечает за заполнение и обновление таблиц маршрутизации и определяется алгоритмом выбора маршрута. Алгоритмы выбора маршрута можно разбить на два основных класса: адаптивные и неадаптивные. Неадаптивные алгоритмы (статическая маршрутизация) не учитывают топологию и текущее состояние сети и не измеряют трафик на линиях связи. Список маршрутов загружается в память маршрутизатора заранее и не изменяется при изменении состояния сети. Адаптивные алгоритмы (динамическая маршрутизация) изменяют решение о выборе маршрутов при изменении топологии сети и в зависимости от загруженности линий.

Рис.2.4. Передача информации между сегментами сложной сети

Наиболее популярны в современных сетях два метода динамической маршрутизации: маршрутизация по вектору расстояния (протокол RIP, который минимизирует число переходов через промежуточные маршрутизаторы – число хопов) и маршрутизация с учетом состояния каналов (протокол OSPF, который минимизирует время достижения нужного сегмента сети).

На сетевом уровне может потребоваться разбить полученный фрейм на более мелкие фрагменты(дейтаграммы), прежде чем передать их дальше.

Примерами протоколов сетевого уровня являются протокол межсетевого взаимодействия IP стека TCP/IP и протокол межсетевого обмена пакетами IPX стека компании Novell IPX/SPX.

^ Транспортный уровень

Транспортный уровень – это сердцевина иерархии протоколов. Он предназначен для оптимизации передачи данных от отправителя к получателю, управления потоком данных, организации приложению или верхним уровням стека необходимой степени надежности передачи данных вне зависимости от физических характеристик использующейся сети или сетей. Начиная с транспортного уровня, все вышележащие протоколы реализуются программными средствами, обычно включаемыми в состав сетевой операционной системы.

Осуществляется несколько классов сервиса. Например, защищенный от ошибок канал между конечными узлами (отправителем и получателем), поставляющий получателю сообщения или байты в том порядке, как они были отправлены. Может предоставляться другой тип сервиса, например, пересылка отдельных сообщений без гарантии соблюдения порядка их доставки. Примерами протоколов этого уровня являются протоколы TCP, SPX, UDP.

^ Сеансовый уровень (уровень сессии)

Уровень позволяет пользователям различных компьютеров устанавливать сеансы связи друг с другом. При этом обеспечивается открытие сеанса, управление диалогом устройств (например, выделение места для файла на диске принимающего устройства) и завершение взаимодействия. Это делается с помощью специальных программных библиотек (например, RPC-remote procedure calls от Sun Microsystems). На практике немногие приложения используют сеансовый уровень.

^ У
ровень представления

Уровень выполняет преобразование данных между компьютерами с различными форматами кодов символов, например ASCII и EBCDIC, то есть преодолевает синтаксические различия в представлении данных. На этом уровне может выполняться шифрование и дешифрирование и сжатие данных, благодаря чему секретность обмена данными обеспечивается сразу для всех прикладных служб.

^ Прикладной уровень (уровень приложения)

Прикладной уровень – это набор разнообразных протоколов, с помощью которых пользователи сети получают доступ к разделяемым ресурсам, таким как файлы, электронная почта, гипертекстовые WEB-страницы, принтеры.

На этом уровне происходит взаимодействие не между компьютерами, а между приложениями: определяется модель, по которой будет происходить обмен файлами, устанавливаются правила, по которым мы будем пересылать почту, организовывать виртуальный терминал, сетевое управление, директории.

Примерами протоколов этого уровня являются: Telnet, X.400, FTP, HTTP.

Выводы

Модель ЭМВОС – это средство для создания и понимания средств передачи данных, классификации функций сетевых устройств и программного обеспечения. В соответствии с ЭМВОС эти функции разбиты на семь уровней. Реализуются они при помощи спецификаций – протоколов.

Разработчики модели полагали, что ЭМВОС и протоколы, разрабатываемые в ее рамках, будут преобладать в средствах компьютерной связи, и, в конце концов, вытеснят фирменные протоколы и конкурирующие модели, такие как TCP/IP. Но этого не произошло, хотя в рамках модели были созданы полезные протоколы. В настоящее время большинство поставщиков сетевого оборудования определяют свои продукты в терминах ЭМВОС (OSI).

^ Дополнительная информация

International Organization for Standardization, Information Processing Systems-Open System Interconnection-Basic Reference Model, ISO7498-1984

Контрольные вопросы

1. Модель OSI является:

А) Международным стандартом.

В) Паневропейским стандартом.

С) Национальным стандартом.

D) Фирменным стандартом.

2. Что определяет модель OSI (исключите ошибочное утверждение):

А) Правила взаимодействия двух сетевых объектов, последовательность и форматы сообщений, которыми они обмениваются.

В) Количество уровней.

С) Названия уровней.

D) Функции, относящиеся к каждому уровню.

3. Можно ли представить себе другой вариант модели взаимодействия открытых систем с другим количеством уровней, например, 12 или 4:

A) Нет, природа сетей требует определения именно семи уровней.

B) Уже существует новая версия модели OSI из 12 уровней.

C) Уже существует новая версия модели OSI из 4 уровней.

D) Да, 7 уровней – это только одно из возможных решений.

4. Зачем нужен заголовок (header) в протокольных блоках данных ЭМВОС?

А) Для обеспечения синхронизации между передающим и принимающим компьютером.

В) Для размещения управляющей информации протоколов.

С) Для размещения открывающего флага блока данных.

D) В частности для размещения адресов сетевых устройств или процессов.

  • Предисловие
  • Глава 1.
    Исторические предпосылки развития высокоскоростных сетей передачи данных
  • Глава 2.
    Эталонная модель взаимодействия открытых систем ЭМВОС (Open System Interconnection - модель OSI)
  • Глава 3.
    Международные стандартизирующие организации
  • Глава 4.
    Физическое и логическое кодирование данных
  • Глава 5.
    Узкополосные и широкополосные системы. Мультиплексирование данных
  • Глава 6.
    Режимы передачи данных. Среды передачи
  • Глава 7.
    Структурированные кабельные системы
  • Глава 8.
    Топологии систем передачи данных
  • Глава 9.
    Методы доступа в канал
  • Глава 10.
    Технологии коммутации
  • Глава 11.
    Связь сегментов сетей
  • Литература

Глава 5. Узкополосные и широкополосные системы. Мультиплексирование данных

Узкополосная система (baseband) использует цифровой способ передачи сигнала. Хотя цифровой сигнал имеет широкий спектр и теоретически занимает бесконечную полосу частот, на практике ширина спектра передаваемого сигнала определяется частотами его основных гармоник. Именно они дают основной энергетический вклад в формирование сигнала. В узкополосной системе передача ведется в исходной полосе частот, не происходит переноса спектра сигнала в другие частотные области. Именно в этом смысле система называется узкополосной. Сигнал занимает практически всю полосу пропускания линии. Для регенерации сигнала и его усиления в сетях передачи данных используют специальные устройства – повторители (repeater, репитор).

Примером реализации узкополосной передачи являются локальные сети и соответствующие спецификации IEEE (например, 802.3 или 802.5).

Ранее узкополосная передача из-за затухания сигналов использовалась на расстояниях порядка 1-2 км по коаксиальным кабелям, но в современных системах, благодаря различным видам кодирования и мультиплексирования сигналов и видам кабельных систем, ограничения отодвинуты до 40 и более километров.

Термин широкополосная (broadband) передача изначально использовался в системах телефонной связи, где им обозначался аналоговый канал с диапазоном частот (шириной полосы пропускания) более 4 КГц. С целью экономии ресурсов при передаче большого числа телефонных сигналов с полосой частот 0,3-3,4 КГц были разработаны различные схемы уплотнения (мультиплексирования) этих сигналов, обеспечивающие их передачу по одному кабелю.

В высокоскоростных сетевых приложениях широкополосная передача означает, что для передачи данных используется не импульсная, а аналоговая несущая. По аналогии термин «широкополосный Интернет» означает, что вы используете канал с пропускной способностью более 128 Кбит/c (в Европе) или 200 Кбит/c (в США). Широкополосная система обладает высокой пропускной способностью, обеспечивает высокоскоростную передачу данных и мультимедийной информации (голос, видео, данные). Примером являются сети АТМ, B-ISDN, Frame Relay, сети кабельного вещания CATV.

Термин «мультиплексирование» используется в компьютерной технике во множестве аспектов. Мы под этим будем понимать объединение нескольких коммуникационных каналов в одном канале передачи данных.

Перечислим основные техники мультиплексирования: частотное уплотнение – Frequency Division Multiplexing (FDM), временное уплотнение – Time Division Multiplexing (TDM) и спектральное или уплотнение по длине волны (волновое) – Wavelength Division Multiplexing (WDM).

WDM применяется только в оптоволоконных системах. Кабельное телевидение, например, использует FDM.

FDM

При частотном мультиплексировании каждому каналу выделяется своя аналоговая несущая. При этом в FDM может применяться любой вид модуляции или их комбинация. Например, в кабельном телевидении по коаксиальному кабелю с шириной полосы пропускания 500 МГц обеспечивается передача 80 каналов по 6 МГц каждый. Каждый из таких каналов в свою очередь получен мультиплексированием подканалов для передачи звука и видеоизображения.

TDM

При этом виде мультиплексирования низкоскоростные каналы объединяются (сливаются) в один высокоскоростной, по которому передается смешанный поток данных, образованный в результате агрегирования исходных потоков. Каждому низкоскоростному каналу присваивается свой временной слот (отрезок времени) внутри цикла определенной длительности. Данные представляются, как биты, байты или блоки бит или байт. Например, каналу А отводятся первые 10 бит внутри временного отрезка заданной длительности (фрейм, кадр), каналу B – следующие 10 бит и т.д. Кроме бит данных фрейм включает служебные биты для синхронизации передачи и других целей. Фрейм имеет строго определенную длину, которая обычно выражается в битах (например, 193 бита) и структуру.

Устройства сети, которые выполняют мультиплексирование потоков данных низкоскоростных каналов (tributary, компонентные потоки) в общий агрегированный поток (aggregate) для передачи по одному физическому каналу, называются мультиплексорами (multiplexer, mux, мукс). Устройства, выполняющие разделение агрегированного потока на компонентные потоки, называются демультиплексорами.

Синхронные мультиплексоры используют фиксированное разделение на временные слоты. Данные, принадлежащие определенному компонентному потоку, имеют одну и ту же длину и передаются в одном и том же временном слоте в каждом фрейме мультиплексированного канала. Если от некоторого устройства информация не передается, то его тайм слот остается пустым. Статистические мультиплексоры (stat muxes) решают эту проблему, динамически присваивая свободный временной слот активному устройству.

WDM

WDM использует различные длины волн светового сигнала для организации каждого канала. Фактически это особый вид частотного уплотнения на очень высоких частотах. При этом виде мультиплексирования передающие устройства работают на разных длинах волн (например, 820нм и 1300нм). Затем лучи объединяются и передаются по одному оптоволоконному кабелю. Принимающее устройство разделяет передачу по длинам волн и направляет лучи в разные приемники. Для слияния/разделения каналов по длинам волн используются специальные устройства – каплеры (coupler). Ниже приведен пример такого мультиплексирования.

Рис.5.1. WDM мультиплексирование

Среди основных конструкций каплеров различают отражающие каплеры и центрально-симметричные отражающие каплеры (SCR). Отражающие каплеры представляют собой крошечные “перекрученные” в центре кусочки стекла в виде звезды. Количество выходных лучей соответствует количеству портов каплера. А число портов определяет количество устройств, передающих на разных длинах волн. Далее показаны два вида отражающих каплеров.

Рис.5.2. Передающая звезда

Рис.5.3. Отражающая звезда

Центрально-симметричный отражающий каплер использует отражение света от сферического зеркала. При этом поступающий луч разделяется на два луча симметрично центра изгиба сферы зеркала. При повороте зеркала меняется положение изгиба сферы и соответственно путь отраженного луча. Можно добавить третий оптоволоконный кабель (fiber) и перенаправить отраженный луч еще на один порт. На этой идее основана реализация WDM – мультиплексоров и оптоволоконных коммутаторов.

Рис.5.4. Центрально-симметричный отражающий каплер

Оптические мультиплексоры могут реализовываться не только при помощи CSR-каплеров, но и при помощи отражающих фильтров и дифракционных решеток. В данном учебном пособии они не рассматриваются.

Основными факторами, определяющими возможности различных реализаций, являются мешающие наводки и разделение каналов. Величина наводки определяет, насколько хорошо разделены каналы, и, например, показывает, какая часть мощности 820-нм луча оказалась на 1300-нм порту. Наводка в 20 ДБ означает, что 1% сигнала появился на непредназначенном порту. Чтобы обеспечить надежное разделение сигналов длины волн должны быть разнесены “широко”. Трудно распознать близкие длины волн, например 1290 и 1310 нм. Обычно используют 4 схемы мультиплексирования: 850/1300, 1300/1550, 1480/1550 и 985/1550 нм. Лучшими характеристиками пока обладают CSR-каплеры с системой зеркал, например, двумя (рис.5.5).

Рис.5.5. SCR-каплер с двумя зеркалами

Технология WDM, представляющая собой одну из трех разновидностей спектрального уплотнения, занимает среднее положение в смысле эффективности использования спектра. В системах WDM объединяются спектральные каналы, длины волн которых отличаются одна от другой на 10 нм. Самой производительной является технология DWDM (Dense WDM). Она предусматривает объединение каналов, разнесенных по спектру не более чем на 1 нм, а в некоторых системах даже на 0,1 нм. Вследствие такого плотного размещения сигналов по спектру стоимость оборудования DWDM обычно очень высока. Наименее эффективно спектральные ресурсы используются в новых системах на основе технологии CWDM (Coarse WDM, разреженные системы WDM). Здесь спектральные каналы разнесены не менее чем на 20 нм (в некоторых случаях эта величина достигает 35 нм). Системы CWDM обычно используются в городских сетях и в LAN, где низкая цена оборудования является важным фактором и требуется организация 8-16 каналов WDM. Оборудование CWDM не ограничено одним участком спектра и может работать в диапазоне от 1300 до 1600 нм, в то время как аппаратура DWDM привязана к более узкому диапазону 1530 - 1565нм.

Выводы

Узкополосная система – это система передачи в исходной полосе частот с использованием цифровых сигналов. Для передачи нескольких узкополосных каналов в одном широкополосном в современных системах передачи по медным кабелям используется временное мультиплексирование TDM. В оптоволоконных системах используется волновое мультиплексирование WDM.

Дополнительная информация

Контрольные вопросы

  • Устройство, в котором все входящие информационные потоки объединяются в одном выходном интерфейсе, выполняет функции:
    • коммутатора
    • ретранслятора
    • мультиплексора
    • демультиплексора
  • Десять сигналов, каждому из которых требуется полоса 4000 Гц, мультиплексируются в один канал с использованием FDM. Какова должна быть минимальная полоса уплотненного канала при ширине защитных интервалов 400 Гц?
    • 40800 Гц
    • 44000 Гц
    • 4800 Гц
    • 43600 Гц

Высокоскоростное подключение делится на 2 типа:

Проводное соединение

К ним относится - телефонный провод, коаксиальный кабель, витая пара, волоконно-оптический кабель.

Беспроводное соединение

Основные технологии передачи данных для доступа к сети Интернет

Технологии проводных соединений:

  • 1 DVB
  • 2 xDSL
  • 3 DOCSIS
  • 4 Ethernet
  • 5 FTTx
  • 6 Dial-up
  • 7 ISDN
  • 8 PLC
  • 9 PON

UMTS / WCDMA (HSDPA; HSUPA; HSPA; HSPA+)

Спутниковый Интернет

DVB (англ. Digital Video Broadcasting -- цифровое видео вещание) -- семейство стандартов цифрового телевидения, разработанных международным консорциумом DVB Project.

Стандарты, разработанные консорциумом DVB Project, делятся на группы по сфере применения. Каждая группа имеет сокращённое название с префиксом DVB-, например, DVB-H -- стандарт для мобильного телевидения.

Стандарты DVB охватывают все уровни модели взаимодействия открытых систем OSI с разной степенью детализации для различных способов передачи цифрового сигнала: наземного (эфирного и мобильного), спутникового, кабельного телевидения (как классического, так и IPTV). На более высоких уровнях OSI стандартизируются системы условного доступа, способы организации информации для передачи в среде IP, различные метаданные.

хDSL (англ. digital subscriber line, цифровая абонентская линия) -- семейство технологий, позволяющих значительно повысить пропускную способность абонентской линии телефонной сети общего пользования путём использования эффективных линейных кодов и адаптивных методов коррекции искажений линии на основе современных достижений микроэлектроники и методов цифровой обработки сигнала.

В аббревиатуре xDSL символ «х» используется для обозначения первого символа в названии конкретной технологии, а DSL обозначает цифровую абонентскую линию DSL (англ. Digital Subscriber Line -- цифровая абонентская линия; также есть другой вариант названия -- Digital Subscriber Loop -- цифровой абонентский шлейф). Технологии хDSL позволяют передавать данные со скоростями, значительно превышающими те скорости, которые доступны даже лучшим аналоговым и цифровым модемам. Эти технологии поддерживают передачу голоса, высокоскоростную передачу данных и видеосигналов, создавая при этом значительные преимущества как для абонентов, так и для провайдеров. Многие технологии хDSL позволяют совмещать высокоскоростную передачу данных и передачу голоса по одной и той же медной паре. Существующие типы технологий хDSL различаются в основном по используемой форме модуляции и скорости передачи данных.

К основным типам xDSL относятся ADSL, HDSL, IDSL, MSDSL, PDSL, RADSL, SDSL, SHDSL, UADSL, VDSL. Все эти технологии обеспечивают высокоскоростной цифровой доступ по абонентской телефонной линии. Некоторые технологии xDSL являются оригинальными разработками, другие представляют собой просто теоретические модели, в то время как третьи уже стали широко используемыми стандартами. Основным различием данных технологий являются методы модуляции, используемые для кодирования данных.

Широкое применение доступа через xDSL имеет ряд преимуществ по сравнению с технологией ISDN. Пользователь получает интегрированное обслуживание двух сетей -- телефонной и компьютерной. Но для пользователя наличие двух сетей оказывается незаметным, для него только ясно, что он может одновременно пользоваться обычным телефоном и подключенным к Интернету компьютером. Скорость же компьютерного доступа при этом превосходит возможности интерфейса PRI сети ISDN при существенно более низкой стоимости, определяемой низкой стоимостью инфраструктуры IP-сетей.

Data Over Cable Service Interface Specifications (DOCSIS) -- стандарт передачи данных по коаксиальному (телевизионному) кабелю. Этот стандарт предусматривает передачу данных абоненту по сети кабельного телевидения с максимальной скоростью до 42 Мбит/с и получение данных от абонента со скоростью до 10,24 Мбит/с. Он призван сменить господствовавшие ранее решения на основе фирменных протоколов передачи данных и методов модуляции, несовместимых друг с другом, и должен гарантировать совместимость аппаратуры различных производителей.

DOCSIS 1.1 дополнительно предусматривает наличие специальных механизмов, улучшающих поддержку IP-телефонии, уменьшающих задержки при передаче речи (например, механизмы фрагментации и сборки больших пакетов, организации виртуальных каналов и задания приоритетов).

DOCSIS имеет прямую поддержку протокола IP с нефиксированной длиной пакетов, в отличие от DVR-RC, который использует ATM Cell transport для передачи IP-пакетов (то есть, IP-пакет сначала переводится в формат ATM, который затем передаётся по кабелю; на другой стороне производится обратный процесс).

Ethernet (от англ. ether -- «эфир» и англ. network -- «сеть, цепь») -- семейство технологий пакетной передачи данных для компьютерных сетей. Стандарты Ethernet определяют проводные соединения и электрические сигналы на физическом уровне, формат кадров и протоколы управления доступом к среде -- на канальном уровне модели OSI. Ethernet в основном описывается стандартами IEEE группы 802.3.

Название «Ethernet» (буквально «эфирная сеть» или «среда сети») отражает первоначальный принцип работы этой технологии: всё, передаваемое одним узлом, одновременно принимается всеми остальными (то есть имеется некое сходство с радиовещанием). В настоящее время практически всегда подключение происходит через коммутаторы (switch), так что кадры, отправляемые одним узлом, доходят лишь до адресата (исключение составляют передачи на широковещательный адрес) -- это повышает скорость работы и безопасность сети.

При проектировании стандарта Ethernet было предусмотрено, что каждая сетевая карта (равно как и встроенный сетевой интерфейс) должна иметь уникальный шестибайтный номер (MAC-адрес), прошитый в ней при изготовлении. Этот номер используется для идентификации отправителя и получателя кадра, и предполагается, что при появлении в сети нового компьютера (или другого устройства, способного работать в сети) сетевому администратору не придётся настраивать MAC-адрес.

Уникальность MAC-адресов достигается тем, что каждый производитель получает в координирующем комитете IEEE Registration Authority диапазон из шестнадцати миллионов (224) адресов, и по мере исчерпания выделенных адресов может запросить новый диапазон. Поэтому по трём старшим байтам MAC-адреса можно определить производителя. Существуют таблицы, позволяющие определить производителя по MAC-адресу; в частности, они включены в программы типа arpalert.

MAC-адрес считывается один раз из ПЗУ при инициализации сетевой карты, в дальнейшем все кадры генерируются операционной системой. Все современные операционные системы позволяют поменять его. Для Windows начиная как минимум с Windows 98 он менялся в реестре. Некоторые драйвера сетевых карт давали возможность изменить его в настройках, но смена работает абсолютно для любых карт.

Некоторое время назад, когда драйверы сетевых карт не давали возможность изменить свой MAC-адрес, а альтернативные возможности не были слишком известны, некоторые провайдеры Internet использовали его для идентификации машины в сети при учёте трафика. Программы из Microsoft Office, начиная с версии Office 97, записывали MAC-адрес сетевой платы в редактируемый документ в качестве составляющей уникального GUID-идентификатора.

Разновидности быстрого Ethernet: Гигабитный Ethernet (Gigabit Ethernet, 1 Гбит/с), 2,5- и 5-гигабитные варианты NBASE-T, MGBASE-T, 10-гигабитный Ethernet (10G Ethernet, 10 Гбит/с), 40-гигабитный и 100-гигабитный Ethernet.

О Terabit Ethernet (так упрощенно называют технологию Ethernet со скоростью передачи 1 Тбит/с) стало известно в 2008 году из заявления создателя Ethernet Боба Меткалфа на одной из конференций, посвящённых, оптоволоконным коммуникациям, который предположил, что технология будет разработана к 2015 году, правда, не выразив при этом какой-либо уверенности, ведь для этого придется решить немало проблем. Однако, по его мнению, ключевой технологией, которая может обслужить дальнейший рост трафика, станет одна из разработанных в предыдущем десятилетии -- DWDM.

Fiber To The X или FTTx (англ. fiber to the x -- оптическое волокно до точки X) -- это общий термин для любой широкополосной телекоммуникационной сети передачи данных, использующей в своей архитектуре волоконно-оптический кабель в качестве последней мили для обеспечения всей или части абонентской линии. Термин является собирательным для нескольких конфигураций развёртывания оптоволокна -- начиная от FTTN (до узла) и заканчивая FTTD (до рабочего стола).

В строгом определении FTTx является только физическим уровнем передачи данных, однако фактически понятием охватывается большое число технологий канального и сетевого уровня. С широкой полосой систем FTTx неразрывно связана возможность предоставления большого числа новых услуг.

В зависимости от условий использования телекоммуникационная отрасль различает несколько отдельных конфигураций FTTX:

FTTN (Fiber to the Node) -- волокно до сетевого узла. Оптоволокно оканчивается в уличном коммуникационном шкафу, возможно за 1-2 км от конечного потребителя, с дальнейшей прокладкой меди -- это может быть xDSL или гибридные волоконно-коаксиальные линии. FTTN зачастую является промежуточным шагом к полному FTTB и, как правило, используется для доставки расширенного пакета Triple Play телекоммуникационных услуг.

FTTC / FTTK (Fiber to the Curb / Fiber to the kerb) -- волокно до микрорайона, квартала или группы домов. Вариант весьма похож на FTTN, но уличный шкаф или столб ближе к помещениям клиента и находится, как правило, в пределах 300 метров -- расстояния для широкополосных медных кабелей, подобных проводному Ethernet или связи по ЛЭП IEEE 1901 или беспроводной технологии Wi-Fi. Иногда FTTC неоднозначно называют FTTP (fiber-to-the-pole, оптика до столба), что вызывает путаницу с «Fiber to the premises system» (оптика до системы помещений).

FTTdp (Fiber To The Distribution Point) -- волокно до точки распределения. Это также похоже на FTTC / FTTN, но ещё на один шаг ближе. Оптоволокно оканчивается в нескольких метрах от границы конечного потребителя и последнее соединение кабелей происходит в распределительной коробке, называемой точкой распределения, что позволяет предоставлять абонентам близкие к гигабитным скорости.

FTTP (Fiber to the premises) -- волокно до помещения. Это сокращение обобщает термины FTTH и FTTB или используется в тех случаях, когда оптоволокно подведено туда, где одновременно есть дома и малый бизнес.

FTTB (Fiber to the Building) -- волокно доходит до границы здания, такой как фундамент многоквартирного дома, подвальное помещение или технический этаж с окончательным подключением каждого жилого помещения при помощи альтернативных способов как в конфигурациях FTTN или FTTP.

FTTH (Fiber to the Home) -- волокно до дома, квартиры или отдельного коттеджа. Кабель доводится до границы жилой площади, например, коммуникационной коробки на стене жилья. Далее абоненту услуги оператора предоставляются посредством технологии PON и PPPoE посредством FTTH-сетей.

FTTD / FTTS (Fiber to the desktop, Fiber to the Subscriber) -- оптическое соединение приходит в основную компьютерную комнату в терминал или в медиаконвертер близ рабочего стола клиента.

FTTE / FTTZ (Fiber to the telecom enclosure, fiber to the zone) -- вид кабельной системы, обычно используемой в локальной сети предприятий, когда оптическое соединение используется от серверного помещения до рабочего места. Эти виды не входят в группу технологий FTTX, несмотря на схожесть в наименованиях.

Аппаратная архитектура и типы подключений

Простейшей архитектурой оптической сети является прямое волокно. При таком способе каждое волокно в кабеле от помещений оператора связи идёт к одному клиенту. Подобные сети могут обеспечить великолепную скорость передачи данных, но они существенно дороже по причине нерационального использования волокон и оборудования, обслуживающего линию связи.

Прямые волокна как правило предоставляются крупным корпоративным клиентам или государственным структурам. Преимуществом является возможность использования 2-го уровня сетевых технологий независимо от того, будь то активная, пассивная или гибридная оптическая сеть.

В прочих же случаях (массовых подключениях абонентов) каждое волокно, идущее от оператора связи, обслуживает множество клиентов. Оно носит название «общее волокно» (англ. shared fiber). При этом оптика доводится максимально близко до клиента, после чего оно соединяется с индивидуальным, идущим до конечного потребителя волокном. В таком соединении применяются как активные, так и пассивные оптические сети.

В зависимости от способа построения оптические сети делятся на:

активные оптические сети -- с работающим активным сетевым оборудованием для усиления и передачи сигнала;

пассивные оптические сети -- с разветвителями оптических сигналов;

гибридные оптические сети -- использующие активные и пассивные компоненты одновременно.

Активная оптическая сеть

Основана на передаче оптического сигнала сетевым электрооборудованием, принимающим, усиливающим и передающим эти сигналы. Это может быть коммутатор, маршрутизатор, медиаконвертер -- как правило, оптические сигналы в активной оптической сети преобразуются в электрические и обратно. Каждый оптический сигнал от централизованного оборудования оператора связи идёт только к тому конечному пользователю, для которого он предназначен.

Входящие со стороны абонентов сигналы избегают коллизий в едином волокне, так как электрооборудование обеспечивает буферизацию. В качестве первой мили от оборудования оператора связи используется оборудование активный ETTH, включающее в себя оптические сетевые коммутаторы с оптикой, и служащее для распространения сигнала к абонентам.

Подобные сети идентичны компьютерным сетям ethernet, используемым в офисах и образовательных учреждениях с тем лишь исключением, что они предназначены для подключения домов и строений к центральному зданию оператора связи, а не для подключения компьютеров и принтеров в ограниченном пространстве. Каждый распределительный шкаф может обслуживать до 1000 абонентов, хотя обычно ограничиваются подключением 400-500 человек.

Такое узловое оборудование обеспечивает коммутацию второго и третьего уровней, а также маршрутизацию, разгружая тем самым магистральный маршрутизатор оператора связи и обеспечивая передачу данных в его серверное помещение. Стандарт IEEE 802.3ah позволяет провайдерам услуг интернета предоставлять скорости до 100 Мбит/с и полным дуплексом по одномодовому оптоволоконному кабелю (англ. Single-mode optical fiber), подключенному по схеме FTTP. Коммерчески доступными также становятся скорости в 1 Гбит/с.

Удалённый доступ (англ. dial-up -- «набор номера, дозвониться») -- сервис, позволяющий компьютеру, используя модем и телефонную сеть общего пользования, подключаться к другому компьютеру (серверу доступа) для инициализации сеанса передачи данных (например, для доступа в сеть Интернет). Обычно dial-up"ом называют только доступ в Интернет на домашнем компьютере или удаленный модемный доступ в корпоративную сеть с использованием двухточечного протокола PPP (теоретически можно использовать и устаревший протокол SLIP).

Телефонная связь через модем не требует никакой дополнительной инфраструктуры, кроме телефонной сети. Поскольку телефонные пункты доступны во всём мире, такое подключение остается полезным для путешественников. Подключение к сети с помощью модема по обычной коммутируемой телефонной линии связи -- единственный выбор, доступный для большинства сельских или отдалённых районов, где получение широкополосной связи невозможно из-за низкой плотности населения и требований. Иногда подключение к сети с помощью модема может также быть альтернативой для людей с ограниченным бюджетом, поскольку оно часто предлагается бесплатно, хотя широкополосная сеть теперь всё более и более доступна по более низким ценам в большинстве стран. Однако в некоторых странах коммутируемый доступ в Интернет остается основным в связи с высокой стоимостью широкополосного доступа, а иногда и отсутствием востребованности услуги у населения. Дозвон требует времени, чтобы установилась связь (несколько секунд, в зависимости от местоположения) и было выполнено подтверждение связи прежде, чем передача данных сможет осуществиться.

Стоимость доступа в Интернет через коммутируемый доступ часто определяется по времени, проведённому пользователем в сети, а не по объёму трафика. Доступ по телефонной линии -- это непостоянная или временная связь, потому что по желанию пользователя или ISP рано или поздно будет разорвана. Провайдеры услуг Интернета зачастую устанавливают ограничение на продолжительность связи и разъединяют пользователя по истечении отведённого времени, вследствие чего необходимо повторное подключение.

У современных модемных подключений максимальная теоретическая скорость составляет 56 кбит/с (при использовании протоколов V.90 или V.92), хотя на практике скорость редко превышает 40--45 кбит/с, а в подавляющем большинстве случаев держится на уровне не более 30 кбит/с. Такие факторы, как шум в телефонной линии и качество самого модема играют большую роль в значении скоростей связи. В некоторых случаях в особенно шумной линии скорость может падать до 15 кбит/с и менее, к примеру в гостиничном номере, где телефонная линия имеет много ответвлений. У телефонного соединения через модем обычно высокое время задержки, которое доходит до 400 миллисекунд или более и которое делает онлайн игры и видео конференц-связь крайне затруднительными или же полностью невозможными. Первые игры от первого лица (3d-actions) являются самыми чувствительными ко времени отклика, делая игру на модеме непрактичной, однако некоторые игры, такие как Star Wars Galaxies, The Sims, Warcraft 3, Guild Wars и Unreal Tournament, Ragnarok Online, всё-таки способны функционировать на подключении в 56 кбит/с.

Когда основанные на телефоне модемы 56 Кбит начинали терять популярность, некоторые провайдеры услуг Интернета, такие как Netzero и Juno, начали использовать предварительное сжатие, чтобы увеличить пропускную способность и поддержать клиентскую базу. Например, Netscape ISP использует программу сжатия, которая сжимает изображения, текст, и другие объекты, до отправки их через телефонную линию. Сжатие со стороны сервера работает эффективнее, чем «непрерывное» сжатие, поддерживающееся V.44 модемами. Обычно текст на веб-сайтах уплотнен к 5 %, таким образом пропускная способность увеличивается приблизительно до 1000 кбит/с, и изображения сжаты с потерями к 15--20 %, что увеличивает пропускную способность до ~350 кбит/с.

Недостаток этого подхода -- потеря качества: графика приобретает артефакты сжатия, однако скорость резко увеличивается, и пользователь может вручную выбирать и рассматривать несжатые изображения в любое время. Провайдеры, использующие такой подход, рекламируют это как «скорость DSL по обычным телефонным линиям» или просто «высокоскоростной dialup».

Замена широкополосной сетью

Начиная с (приблизительно) 2000 года, широкополосный доступ в Интернет по технологии DSL заменил доступ через обычный модем во многих частях мира. Широкополосная связь типично предлагает скорость начиная от 128 кбит/с и выше за меньшую цену, нежели dialup. Все увеличивающийся объём контента в таких областях, как видео, развлекательные порталы, СМИ и пр., уже не позволяет сайтам работать на dialup-модемах. Однако, во множестве областей коммутируемый доступ все ещё остается востребованным, а именно там, где высокая скорость не требуется. Отчасти это происходит из-за того, что в некоторых регионах прокладка широкополосных сетей экономически невыгодна или по тем или иным причинам невозможна. Хотя существуют технологии беспроводного широкополосного доступа, но из-за высокой стоимости инвестиций, низкой доходности и плохого качества связи сложно организовать необходимую инфраструктуру. Некоторые операторы связи, предоставляющие dialup, ответили на все увеличивающуюся конкуренцию, понижая тарифы к значениям 150 рублей в месяц и делающие dialup привлекательным выбором для тех, кто просто желает читать электронную почту или просматривать новости в текстовом формате.

ISDN (англ. Integrated Services Digital Network) -- цифровая сеть с интеграцией служб. Позволяет совместить услуги телефонной связи и обмена данными.

Основное назначение ISDN -- передача данных со скоростью до 64 кбит/с по абонентской проводной линии и обеспечение интегрированных телекоммуникационных услуг (телефон, факс, и пр.). Использование для этой цели телефонных проводов имеет два преимущества: они уже существуют и могут использоваться для подачи питания на терминальное оборудование.

Выбор 64 кбит/c стандарта определяется следующими соображениями. При полосе частот 4 кГц, согласно теореме Котельникова, частота дискретизации должна быть не ниже 8 кГц. Минимальное число двоичных разрядов для представления результатов стробирования голосового сигнала при условии логарифмического преобразования равно 8. Таким образом, в результате перемножения этих чисел (8 кГц * 8 (число двоичных разрядов) = 64) и получается значение полосы B-канала ISDN, равное 64 кб/с. Базовая конфигурация каналов имеет вид 2 Ч B + D = 2 Ч 64 + 16 = 144 кбит/с. Помимо B-каналов и вспомогательного D-канала, ISDN может предложить и другие каналы с большей пропускной способностью: канал Н0 с полосой 384 кбит/с, Н11 -- 1536 кбит/c и Н12 -- 1920 кбит/c (реальные скорости цифрового потока). Для первичных каналов (1544 и 2048 кбит/с) полоса D-канала может составлять 64 кбит/с.

Принцип работы

Для объединения в сети ISDN различных видов трафика используется технология TDM (англ. Time Division Multiplexing, мультиплексирование по времени). Для каждого типа данных выделяется отдельная полоса, называющаяся элементарным каналом (или стандартным каналом). Для этой полосы гарантируется фиксированная, согласованная доля полосы пропускания. Выделение полосы происходит после подачи сигнала CALL по отдельному каналу, называющемуся каналом внеканальной сигнализации.

В стандартах ISDN определяются базовые типы каналов, из которых формируются различные пользовательские интерфейсы (Приложение 1).

В большинстве случаев применяются каналы типов B и D.

Из указанных типов каналов формируются интерфейсы, наибольшее распространение получили следующие типы:

Интерфейс базового уровня (англ. Basic Rate Interface, BRI) -- предоставляет для связи аппаратуры абонента и ISDN-станции два B-канала и один D-канал. Интерфейс базового уровня описывается формулой 2B+D. В стандартном режиме работы BRI могут быть одновременно использованы оба B-канала (например, один для передачи данных, другой для передачи голоса) или один из них. При одновременной работе каналов они могут обеспечивать соединение с разными абонентами. Максимальная скорость передачи данных для BRI интерфейса составляет 128кб/с. D-канал используется только для передачи управляющей информации. В режиме AO/DI (Always On/Dynamic ISDN) полоса 9,6 кбит/c D-канала используется в качестве постоянно включённого выделенного канала X.25, как правило, подключаемого к Интернет. При необходимости используемая для доступа к Интернет полоса расширяется путём включения одного или двух B-каналов. Этот режим, хотя и стандартизирован (под наименованием X.31), не нашёл широкого распространения. Для входящих соединений BRI поддерживается до 7 адресов (номеров), которые могут назначаться различными ISDN-устройствами, разделяющими одну абонентскую линию. Дополнительно обеспечивается режим совместимости с обычными, аналоговыми абонентскими устройствами -- абонентское оборудование ISDN, как правило, допускает подключение таких устройств и позволяет им работать прозрачным образом. Интересным побочным эффектом такого «псевдоаналогового» режима работы стала возможность реализации симметричного модемного протокола X2 фирмы US Robotics, позволявшего передачу данных поверх линии ISDN в обе стороны на скорости 56 кбит/c.

Наиболее распространённый тип сигнализации -- Digital Subscriber System No. 1 (DSS1), также известный как Euro-ISDN. Используется два магистральных режима портов BRI относительно станции или телефонов -- S/ТЕ и NT. Режим S/ТЕ -- порт эмулирует работу ISDN телефона, режим NT -- эмулирует работу станции. Отдельное дополнение -- использование ISDN-телефона с дополнительным питанием в этом режиме, так как стандартно не все порты (и карты HFC) дают питание по ISDN-шлейфу (англ. inline power). Каждый из двух режимов может быть «точка-многоточка» (англ. point-to-multi-point, PTMP) он же MSN (англ. Multiple Subscriber Number), или «точка-точка» (англ. point-to-point, PTP). В первом режиме для поиска адресата назначения на шлейфе используются номера MSN, которые, как правило, совпадают с выделенными провайдером телефонии городскими номерами. Провайдер должен сообщить передаваемые им MSN. Иногда провайдер использует так называемые «технические номера» -- промежуточные MSN. Во втором режиме BRI-порты могут объединяться в транк -- условную магистраль, по которой передаваемые номера могут использоваться в многоканальном режиме.

ISDN-технология использует три основных типа интерфейса BRI: U, S и T.

U -- одна витая пара, проложенная от коммутатора до абонента, работающая в полном или полудуплексе. К U-интерфейсу можно подключить только 1 устройство, называемое сетевым окончанием (англ. Network Termination, NT-1 или NT-2).

S/T интерфейс (S0). Используются две витые пары, передача и приём. Может быть обжата как в RJ-45, так и в RJ-11 гнездо/кабель. К гнезду S/T интерфейса можно подключить одним кабелем (шлейфом) по принципу шины до 8 ISDN устройств -- телефонов, модемов, факсов, называемых TE1 (Terminal Equipment 1). Каждое устройство слушает запросы в шине и отвечает на привязанный к нему MSN. Принцип работы во многом похож на SCSI.

NT-1, NT-2 -- Network Termination, сетевое окончание. Преобразовывает одну пару U в один (NT-1) или два (NT-2) 2-х парных S/T интерфейса (с раздельными парами для приёма и передачи). По сути, S и T -- это одинаковые с виду интерфейсы, разница в том, что по S-интерфейсу можно подать питание для TE-устройств, например, телефонов, а по T -- нет. Большинство NT-1 и NT-2 преобразователей умеют и то, и другое, поэтому интерфейсы чаще всего называют S/T.

Интерфейс первичного уровня

  • (Primary Rate Interface, PRI) -- используется для подключения к широкополосным магистралям, связывающим местные и центральные АТС или сетевые коммутаторы. Интерфейс первичного уровня объединяет:
  • * для стандарта E1 (распространён в Европе) 30 В-каналов и один D-канал 30B+D. Элементарные каналы PRI могут использоваться как для передачи данных, так и для передачи оцифрованного телефонного сигнала.
  • * для стандарта Т1 (распространен в Северной Америке и Японии, а также -- в технологии DECT) 23 В-канала и один D-канал 23B+D.

Архитектура сети ISDN

Сеть ISDN состоит из следующих компонентов:

сетевые терминальные устройства (NT, англ. Network Terminal Devices)

линейные терминальные устройства (LT, англ. Line Terminal Equipment)

терминальные адаптеры (TA, англ. Terminal adapters)

абонентские терминалы

Абонентские терминалы обеспечивают пользователям доступ к услугам сети. Существует два вида терминалов: TE1 (специализированные ISDN-терминалы), TE2 (неспециализированные терминалы). TE1 обеспечивает прямое подключение к сети ISDN, TE2 требуют использования терминальных адаптеров (TA).

Интересные факты

Из более чем 230 базовых функций ISDN реально используется только весьма малая их часть (востребованная потребителем).

PLC -- (Power Line Communication) -- коммуникация, построенная на линиях электропередачи.

Связь через PLC - термин, описывающий несколько разных систем для использования линий электропередачи (ЛЭП) для передачи голосовой информации или данных. Сеть может передавать голос и данные, накладывая аналоговый сигнал поверх стандартного переменного тока частотой 50 Гц или 60 Гц. PLC включает BPL (англ. Broadband over Power Lines -- широкополосная передача через линии электропередачи), обеспечивающий передачу данных со скоростью до 500 Мбит/с, и NPL (англ. Narrowband over Power Lines -- узкополосная передача через линии электропередачи) со значительно меньшими скоростями передачи данных до 1 Мбит/с.

Технология PLC базируется на использовании силовых электросетей для высокоскоростного информационного обмена. Эксперименты по передаче данных по электросети велись достаточно давно, но низкая скорость передачи и слабая помехозащищённость были наиболее узким местом данной технологии. Появление более мощных DSP-процессоров (цифровые сигнальные процессоры) дало возможность использовать более сложные способы модуляции сигнала, такие как OFDM-модуляция, что позволило значительно продвинуться вперед в реализации технологии PLC.

В 2000 году несколько крупных лидеров на рынке телекоммуникаций объединились в HomePlug Powerline Alliance с целью совместного проведения научных исследований и практических испытаний, а также принятия единого стандарта на передачу данных по системам электропитания. Прототипом PowerLine является технология PowerPacket фирмы Intellon, положенная в основу для создания единого стандарта HomePlug1.0 (принят альянсом HomePlug 26 июня 2001 года), в котором определена скорость передачи данных до 14 Мб/сек.

Однако на данный момент стандарт HomePlug AV поднял скорость передачи данных до 500 Мбит/с.

Технические основы технологии PLC

Основой технологии PowerLine является использование частотного разделения сигнала, при котором высокоскоростной поток данных разбирается на несколько относительно низкоскоростных потоков, каждый из которых передается на отдельной поднесущей частоте с последующим их объединением в один сигнал. Реально в технологии PowerLine используются 1536 поднесущие частоты с выделением 84 наилучших в диапазоне 2--34 Мгц.

При передаче сигналов по бытовой электросети могут возникать большие затухания в передающей функции на определенных частотах, что может привести к потере данных. В технологии PowerLine предусмотрен специальный метод решения этой проблемы -- динамическое включение и выключение передачи сигнала (dynamically turning off and on data-carrying signals). Суть данного метода заключается в том, что устройство осуществляет постоянный мониторинг канала передачи с целью выявления участка спектра с превышением определенного порогового значения затухания. В случае обнаружения данного факта, использование этих частот на время прекращается до восстановления нормального значения затухания, а данные передаются на других частотах.

Существует также проблема возникновения импульсных помех (до 1 микросекунды), источниками которых могут быть галогенные лампы, а также включение и выключение мощных бытовых электроприборов, оборудованных электрическими двигателями.

Применение PLC-технологии для подключения к Интернету

В настоящее время подавляющее большинство конечных подключений осуществляется посредством прокладки кабеля от высокоскоростной линии до квартиры или офиса пользователя. Это наиболее дешевое и надежное решение, но если прокладка кабеля невозможна, то можно воспользоваться имеющейся в каждом здании системой силовых электрических коммуникаций. При этом любая электрическая розетка в здании может стать точкой выхода в Интернет. От пользователя требуется только наличие PowerLine-модема для связи с аналогичным устройством, установленным, как правило, в электрощитовой здания и подключенным к высокоскоростному каналу. PLC может быть хорошим решением «последней мили» в коттеджных посёлках и в малоэтажной застройке, в связи с тем, что традиционные провода стоят в несколько раз дороже PLC.

PON (аббр. от англ. Passive optical network, пассивная оптическая сеть) -- технология пассивных оптических сетей.

Распределительная сеть доступа PON основана на древовидной волоконно-кабельной архитектуре с пассивными оптическими разветвителями на узлах, представляет экономичный способ обеспечить широкополосную передачу информации. При этом архитектура PON обладает необходимой эффективностью наращивания узлов сети и пропускной способности, в зависимости от настоящих и будущих потребностей абонентов.

Первые шаги в технологии PON были предприняты в 1995 году, когда группа из 7 компаний (British Telecom, France Telecom, Deutsche Telecom, NTT, KPN, Telefonica и Telecom Italia) создала консорциум для реализации идеи множественного доступа по одному волокну.

Стандарты

APON (ATM Passive Optical Network).

BPON (Broadband PON)

GPON (Gigabit PON)

EPON или GEPON (Ethernet PON)

10GEPON (10 Gigabit Ethernet PON)

Развитие стандартов PON

Стандарты NGPON 2 представляют собой спецификации дальнейшего развития технологий GPON и EPON. Сегодня на роль стандарта NGPON 2 претендуют как минимум три технологии:

«Чистая» (pure) WDM PON

Гибридная (TDM/WDM) TWDM PON

UDWDM (Ultra Dense WDM) PON

Основная идея архитектуры PON (принцип действия) -- использование всего одного приёмопередающего модуля в OLT (англ. optical line terminal) для передачи информации множеству абонентских устройств ONT (optical network terminal в терминологии ITU-T), также называемых ONU (optical network unit) в терминологии IEEE и приёма информации от них.

Число абонентских узлов, подключенных к одному приёмопередающему модулю OLT, может быть настолько большим, насколько позволяет бюджет мощности и максимальная скорость приёмопередающей аппаратуры. Для передачи потока информации от OLT к ONT -- прямого (нисходящего) потока, как правило, используется длина волны 1490 нм. Наоборот, потоки данных от разных абонентских узлов в центральный узел, совместно образующие обратный (восходящий) поток, передаются на длине волны 1310 нм. Для передачи сигнала телевидения используется длина волны 1550 нм. В OLT и ONT встроены мультиплексоры WDM, разделяющие исходящие и входящие потоки.

Прямой поток

Прямой поток на уровне оптических сигналов является широковещательным. Каждый абонентский узел ONT, читая адресные поля, выделяет из этого общего потока предназначенную только ему часть информации. Фактически мы имеем дело с распределённым демультиплексором.

Обратный поток

Все абонентские узлы ONT ведут передачу в обратном потоке на одной и той же длине волны, используя концепцию множественного доступа с временным разделением TDMA (time division multiple access). Чтобы исключить возможность пересечения сигналов от разных ONT, для каждого из них устанавливается своё индивидуальное расписание по передаче данных с учётом поправки на задержку, связанную с удалением данного ONT от OLT. Эту задачу решает протокол TDMA.

Топологии сетей доступа

Существуют четыре основные топологии построения оптических сетей доступа:

«кольцо»;

«точка-точка»;

«дерево с активными узлами»;

«дерево с пассивными узлами».

Преимущества технологии PON

отсутствие промежуточных активных узлов;

экономия оптических приёмопередатчиков в центральном узле;

экономия волокон;

Древовидная топология P2MP позволяет оптимизировать размещение оптических разветвителей, исходя из реального расположения абонентов, затрат на прокладку ОК и эксплуатацию кабельной сети.

К недостаткам сетевой технологии PON можно отнести:

возросшую сложность технологии PON;

отсутствие резервирования в простейшей топологии дерева.

Технологии беспроводных соединений:

Спутниковый Интернет

Wi-Fi -- торговая марка Wi-Fi Alliance для беспроводных сетей на базе стандарта IEEE 802.11. Под аббревиатурой Wi-Fi (от английского словосочетания Wireless Fidelity, которое можно дословно перевести как «беспроводное качество» или «беспроводная точность») в настоящее время развивается целое семейство стандартов передачи цифровых потоков данных по радиоканалам.

Любое оборудование, соответствующее стандарту IEEE 802.11, может быть протестировано в Wi-Fi Alliance и получить соответствующий сертификат и право нанесения логотипа Wi-Fi.

Wi-Fi был создан в 1996 году в лаборатории радиоастрономии CSIRO (Commonwealth Scientific and Industrial Research Organisation) в Канберре, Австралия. Создателем беспроводного протокола обмена данными является инженер Джон О"Салливан (John O"Sullivan).

Стандарт IEEE 802.11n был утверждён 11 сентября 2009 года. Его применение позволяет повысить скорость передачи данных практически вчетверо по сравнению с устройствами стандартов 802.11g (максимальная скорость которых равна 54 Мбит/с), при условии использования в режиме 802.11n с другими устройствами 802.11n. Теоретически 802.11n способен обеспечить скорость передачи данных до 600 Мбит/с. С 2011 по 2013 разрабатывался стандарт IEEE 802.11ac. Скорость передачи данных при использовании 802.11ac может достигать нескольких Гбит/с. Большинство ведущих производителей оборудования уже анонсировали устройства, поддерживающие данный стандарт.

27 июля 2011 года Институт инженеров электротехники и электроники (IEEE) выпустил официальную версию стандарта IEEE 802.22. Системы и устройства, поддерживающие этот стандарт, позволяют принимать данные на скорости до 22 Мбит/с в радиусе 100 км от ближайшего передатчика.

Принцип работы

Обычно схема Wi-Fi сети содержит не менее одной точки доступа и не менее одного клиента. Также возможно подключение двух клиентов в режиме точка-точка (Ad-hoc), когда точка доступа не используется, а клиенты соединяются посредством сетевых адаптеров «напрямую». Точка доступа передаёт свой идентификатор сети SSID с помощью специальных сигнальных пакетов на скорости 0,1 Мбит/с каждые 100 мс. Поэтому 0,1 Мбит/с -- наименьшая скорость передачи данных для Wi-Fi. Зная SSID сети, клиент может выяснить, возможно ли подключение к данной точке доступа. При попадании в зону действия двух точек доступа с идентичными SSID приёмник может выбирать между ними на основании данных об уровне сигнала. Стандарт Wi-Fi даёт клиенту полную свободу при выборе критериев для соединения.

Однако стандарт не описывает всех аспектов построения беспроводных локальных сетей Wi-Fi. Поэтому каждый производитель оборудования решает эту задачу по-своему, применяя те подходы, которые он считает наилучшими с той или иной точки зрения. Поэтому возникает необходимость классификации способов построения беспроводных локальных сетей.

По способу объединения точек доступа в единую систему можно выделить:

Автономные точки доступа (называются также самостоятельные, децентрализованные, умные)

Точки доступа, работающие под управлением контроллера (называются также «легковесные», централизованные)

Бесконтроллерные, но не автономные (управляемые без контроллера)

По способу организации и управления радиоканалами можно выделить беспроводные локальные сети:

Со статическими настройками радиоканалов

С динамическими (адаптивными) настройками радиоканалов

Со «слоистой» или многослойной структурой радиоканалов

Преимущества Wi-Fi

Позволяет развернуть сеть без прокладки кабеля, что может уменьшить стоимость развёртывания и/или расширения сети. Места, где нельзя проложить кабель, например, вне помещений и в зданиях, имеющих историческую ценность, могут обслуживаться беспроводными сетями.

Позволяет иметь доступ к сети мобильным устройствам.

Wi-Fi устройства широко распространены на рынке. Гарантируется совместимость оборудования благодаря обязательной сертификации оборудования с логотипом Wi-Fi.

Мобильность. Вы больше не привязаны к одному месту и можете пользоваться Интернетом в комфортной для вас обстановке.

В пределах Wi-Fi зоны в сеть Интернет могут выходить несколько пользователей с компьютеров, ноутбуков, телефонов и т. д.

Излучение от Wi-Fi устройств в момент передачи данных на порядок (в 10 раз) меньше, чем у сотового телефона.

Недостатки Wi-Fi

В диапазоне 2,4 GHz работает множество устройств, таких как устройства, поддерживающие Bluetooth, и др., и даже микроволновые печи, что ухудшает электромагнитную совместимость.

Производителями оборудования указывается скорость на L1 (OSI), в результате чего создаётся иллюзия, что производитель оборудования завышает скорость, но на самом деле в Wi-Fi весьма высоки служебные «накладные расходы». Получается, что скорость передачи данных на L2 (OSI) в Wi-Fi сети всегда ниже заявленной скорости на L1 (OSI). Реальная скорость зависит от доли служебного трафика, которая зависит уже от наличия между устройствами физических преград (мебель, стены), наличия помех от других беспроводных устройств или электронной аппаратуры, расположения устройств относительно друг друга и т. п.

Частотный диапазон и эксплуатационные ограничения в различных странах не одинаковы. Во многих европейских странах разрешены два дополнительных канала, которые запрещены в США; В Японии есть ещё один канал в верхней части диапазона, а другие страны, например Испания, запрещают использование низкочастотных каналов. Более того, некоторые страны, например Россия, Беларусь и Италия, требуют регистрации всех сетей Wi-Fi, работающих вне помещений, или требуют регистрации Wi-Fi-оператора.

В России точки беспроводного доступа, а также адаптеры Wi-Fi с ЭИИМ, превышающей 100 мВт (20 дБм), подлежат обязательной регистрации.

Стандарт шифрования WEP может быть относительно легко взломан даже при правильной конфигурации (из-за слабой стойкости алгоритма). Новые устройства поддерживают более совершенные протоколы шифрования данных WPA и WPA2. Принятие стандарта IEEE 802.11i (WPA2) в июне 2004 года сделало возможным применение более безопасной схемы связи, которая доступна в новом оборудовании. Обе схемы требуют более стойкий пароль, чем те, которые обычно назначаются пользователями. Многие организации используют дополнительное шифрование (например VPN) для защиты от вторжения. На данный момент основным методом взлома WPA2 является подбор пароля, поэтому рекомендуется использовать сложные цифро-буквенные пароли для того, чтобы максимально усложнить задачу подбора пароля.

В режиме точка-точка (Ad-hoc) стандарт предписывает лишь реализовать скорость 11 Мбит/сек (802.11b). Шифрование WPA(2) недоступно, только легковзламываемый WEP.

Wi-Fi пригоден для использования VoIP в корпоративных сетях или в среде SOHO. Первые образцы оборудования появились уже в начале 2000-х, однако на рынок они вышли только в 2005 году. Тогда такие компании, как Zyxel, UT Starcomm, Samsung, Hitachi и многие другие, представили на рынок VoIP Wi-Fi-телефоны по «разумным» ценам. В 2005 году ADSL ISP провайдеры начали предоставлять услуги VoIP своим клиентам (например нидерландский ISP XS4All). Когда звонки с помощью VoIP стали очень дешёвыми, а зачастую вообще бесплатными, провайдеры, способные предоставлять услуги VoIP, получили возможность открыть новый рынок -- услуг VoIP. Телефоны GSM с интегрированной поддержкой возможностей Wi-Fi и VoIP начали выводиться на рынок, и потенциально они могут заменить проводные телефоны.

В настоящий момент непосредственное сравнение Wi-Fi и сотовых сетей нецелесообразно. Телефоны, использующие только Wi-Fi, имеют очень ограниченный радиус действия, поэтому развёртывание таких сетей обходится очень дорого. Тем не менее, развёртывание таких сетей может быть наилучшим решением для локального использования, например, в корпоративных сетях. Однако устройства, поддерживающие несколько стандартов, могут занять значительную долю рынка.

Стоит заметить, что при наличии в данном конкретном месте покрытия как GSM, так и Wi-Fi, экономически намного более выгодно использовать Wi-Fi, разговаривая посредством сервисов интернет-телефонии. Например, клиент Skype давно существует в версиях как для смартфонов, так и для КПК.

Международные проекты

Другая бизнес-модель состоит в соединении уже имеющихся сетей в новые. Идея состоит в том, что пользователи будут разделять свой частотный диапазон через персональные беспроводные маршрутизаторы, комплектующиеся специальным ПО. Например FON -- испанская компания, созданная в ноябре 2005 года. Сейчас сообщество объединяет более 2 000 000 пользователей в Европе, Азии и Америке и быстро развивается. Пользователи делятся на три категории:

linus -- выделяющие бесплатный доступ в Интернет,

bills -- продающие свой частотный диапазон,

aliens -- использующие доступ через bills.

Таким образом, система аналогична пиринговым сервисам. Несмотря на то, что FON получает финансовую поддержку от таких компаний, как Google и Skype, лишь со временем будет ясно, будет ли эта идея действительно работать.

Сейчас у этого сервиса есть три основные проблемы. Первая заключается в том, что для перехода проекта из начальной стадии в основную требуется больше внимания со стороны общественности и СМИ. Нужно также учитывать тот факт, что предоставление доступа к вашему интернет-каналу другим лицам может быть ограничено вашим договором с интернет-провайдером. Поэтому интернет-провайдеры будут пытаться защитить свои интересы. Так же, скорее всего, поступят звукозаписывающие компании, выступающие против свободного распространения MP3.

В России основное количество точек доступа сообщества FON расположено в московском регионе.

ГОУ ВПО «Дальневосточный государственный

университет путей сообщения»

Институт ИИФО

Кафедра: «АТиС»

Реферат по дисциплине

Сетевые технологии высокоскоростных систем передачи данных

Тема: «Компьютерная сеть WLAN »

Выполнил: Ежиков Д.А.

КТ13-ИКТ(БТ)ОС-240

Проверил: Каритан К.А.

Хабаровск 2015 г.

Введение ……………………………………………………………………….3

Беспроводные технологии …………………………………………………..4

Безопасность …………………………………………………………………..6

Wireless LAN………………………………………………………………….. 7

Организация сети…………………………………………………………….. 8

………………………………………... 8

Заключение ……………………………………………………………………10

……………………………………....11

Введение

Так сложилось, что в нашей стране большую распространенность получили районные Ethernet сети, затягивающие в квартиру витую пару. Когда дома всего один компьютер, вопросов с подключением кабеля обычно не возникает. Но когда появляется желание лазить в Интернет с компьютера, лэптопа и КПК с возможностью беспроводного подключения, задумываешься о том, как все это грамотно осуществить. Разделить один Интернет-канал на всех домочадцев нам помогают многофункциональные роутеры.

Потребность в создании дома персональной Wi-fi сети испытывает, наверное, любой обладатель ноутбука или КПК. Конечно, можно купить точку доступа и организовать беспроводный доступ через нее. Но куда удобнее иметь устройство «всё в одном», ведь роутеры справляются с этой функцией ничуть не хуже точек доступа. Главное, на что стоит обращать внимание, это поддерживаемые стандарты Wi-fi. Ибо в последние несколько лет среди производителей появилась тенденция выпускать устройства с поддержкой еще не существующих стандартов. Безусловно, в этом есть определенная польза. Мы получаем большую производительность и дальнобойность wi-fi при использовании оборудования от одного производителя. Однако, поскольку каждый из них реализует новшества так, как ему больше нравится (стандарт ведь пока не принят), совместимости оборудования от разных производителей мы не наблюдаем.

Обычно беспроводные сетевые технологии группируются в три типа, различающиеся по масштабу действия их радиосистем, но все они с успехом применяются в бизнесе.

WLAN (беспроводные локальные сети) - радиус действия до 100 м. С их помощью реализуется беспроводной доступ к групповым ресурсам в здании, университетском кампусе и т. п. Обычно такие сети используются для продолжения проводных корпоративных локальных сетей. В небольших компаниях WLAN могут полностью заменить проводные соединения. Основной стандарт для WLAN - 802.11.

Беспроводные технологии

Беспроводные технологии - подкласс информационных технологий, служат для передачи информации на расстояние между двумя и более точками, не требуя связи их проводами. Для передачи информации может использоваться инфракрасное излучение, радиоволны, оптическое или лазерное излучение. В настоящее время существует множество беспроводных технологий, наиболее часто известных пользователям по их маркетинговым названиям, таким как Wi-Fi, WiMAX, Bluetooth. Каждая технология обладает определёнными характеристиками, которые определяют её область применения.

Существуют различные подходы к классификации беспроводных технологий.

По дальности действия:

Беспроводные персональные сети (WPAN - Wireless Personal Area Networks). Примеры технологий - Bluetooth.

Беспроводные локальные сети (WLAN - Wireless Local Area Networks). Примеры технологий - Wi-Fi.

Беспроводные сети масштаба города (WMAN - Wireless Metropolitan Area Networks). Примеры технологий - WiMAX.

Беспроводные глобальные сети (WWAN - Wireless Wide Area Network). Примеры технологий - CSD, GPRS, EDGE, EV-DO, HSPA.......По топологии:

- «Точка-точка».

- «Точка-многоточка».......По области применения:

Корпоративные (ведомственные) беспроводные сети - создаваемые компаниями для собственных нужд.

Операторские беспроводные сети - создаваемые операторами связи для возмездного оказания услуг.

Беспроводные компьютерные сети

.Беспроводные компьютерные сети - это технология, позволяющая создавать вычислительные сети, полностью соответствующие стандартам для обычных проводных сетей (например, Ethernet), без использования кабельной проводки. В качестве носителя информации в таких сетях выступают радиоволны СВЧ-диапазона.

Применение

Существует два основных направления применения беспроводных компьютерных сетей:

Работа в замкнутом объеме (офис, выставочный зал и т. п.);

Соединение удаленных локальных сетей (или удаленных сегментов локальной сети).

Для организации беспроводной сети в замкнутом пространстве применяются передатчики со всенаправленными антеннами. Стандарт IEEE 802.11 определяет два режима работы сети - Ad-hoc и клиент-сервер. Режим Ad-hoc (иначе называемый «точка-точка») - это простая сеть, в которой связь между станциями (клиентами) устанавливается напрямую, без использования специальной точки доступа. В режиме клиент-сервер беспроводная сеть состоит, как минимум, из одной точки доступа, подключенной к проводной сети, и некоторого набора беспроводных клиентских станций. Поскольку в большинстве сетей необходимо обеспечить доступ к файловым серверам, принтерам и другим устройствам, подключенным к проводной локальной сети, чаще всего используется режим клиент-сервер. Без подключения дополнительной антенны устойчивая связь для оборудования IEEE 802.11b достигается в среднем на следующих расстояниях: открытое пространство - 500 м, комната, разделенная перегородками из неметаллического материала - 100 м, офис из нескольких комнат - 30 м. Следует иметь в виду, что через стены с большим содержанием металлической арматуры (в железобетонных зданиях таковыми являются несущие стены) радиоволны диапазона 2,4 ГГц иногда могут вообще не проходить, поэтому в комнатах, разделенных подобной стеной, придется ставить свои точки доступа.

Для соединения удаленных локальных сетей (или удаленных сегментов локальной сети) используется оборудование с направленными антеннами, что позволяет увеличить дальность связи до 20 км (а при использовании специальных усилителей и большой высоте размещения антенн - до 50 км). Причем в качестве подобного оборудования могут выступать и устройства Wi-Fi, нужно лишь добавить к ним специальные антенны (конечно, если это допускается конструкцией). Комплексы для объединения локальных сетей по топологии делятся на «точку-точку» и «звезду». При топологии «точка-точка» (режим Ad-hoc в IEEE 802.11) организуется радиомост между двумя удаленными сегментами сети. При топологии «звезда» одна из станций является центральной и взаимодействует с другими удаленными станциями. При этом центральная станция имеет всенаправленную антенну, а другие удаленные станции - однонаправленные антенны. Применение всенаправленной антенны в центральной станции ограничивает дальность связи дистанцией примерно 7 км. Поэтому, если требуется соединить между собой сегменты локальной сети, удаленные друг от друга на расстояние более 7 км, приходится соединять их по принципу «точка-точка». При этом организуется беспроводная сеть с кольцевой или иной, более сложной топологией.

Мощность, излучаемая передатчиком точки доступа или же клиентской станции, работающей по стандарту IEEE 802.11, не превышает 0,1 Вт, но многие производители беспроводных точек доступа ограничивают мощность лишь программным путем, и достаточно просто поднять мощность до 0,2-0,5 Вт. Для сравнения - мощность, излучаемая мобильным телефоном, на порядок больше(в момент звонка - до 2 Вт). Поскольку, в отличие от мобильного телефона, элементы сети расположены далеко от головы, в целом можно считать, что беспроводные компьютерные сети более безопасны с точки зрения здоровья, чем мобильные телефоны. Если беспроводная сеть используется для объединения сегментов локальной сети, удаленных на большие расстояния, антенны, как правило, размещаются за пределами помещения и на большой высоте.

Безопасность

Продукты для беспроводных сетей, соответствующие стандарту IEEE 802.11, предлагают четыре уровня средств безопасности: физический, идентификатор набора служб (SSID - Service Set Identifier), идентификатор управления доступом к среде (MAC ID - Media Access Control ID) и шифрование. Технология DSSS для передачи данных в частотном диапазоне 2,4 ГГц за последние 50 лет нашла широкое применение в военной связи для улучшения безопасности беспроводных передач. В рамках схемы DSSS поток требующих передачи данных «разворачивается» по каналу шириной 20 МГц в рамках диапазона ISM с помощью схемы ключей дополнительного кода (Complementary Code Keying, CCK). Для декодирования принятых данных получатель должен установить правильный частотный канал и использовать ту же самую схему CCK. Таким образом, технология на базе DSSS обеспечивает первую линию обороны от нежелательного доступа к передаваемым данным. Кроме того, DSSS представляет собой «тихий» интерфейс, так что практически все подслушивающие устройства будут отфильтровывать его как «белый шум». Идентификатор SSID позволяет различать отдельные беспроводные сети, которые могут действовать в одном и том же месте или области. Он представляет собой уникальное имя сети, включаемое в заголовок пакетов данных и управления IEEE 802.11. Беспроводные клиенты и точки доступа используют его, чтобы проводить фильтрацию и принимать только те запросы, которые относятся к их SSID. Таким образом, пользователь не сможет обратиться к точке доступа, если только ему не предоставлен правильный SSID.

Wireless LAN

......Wireless LAN (англ. Wireless Local Area Network; WLAN) - беспроводная локальная сеть. При таком способе построения сетей передача данных осуществляется через радиоэфир; объединение устройств в сеть происходит без использования кабельных соединений. Наиболее распространенными на сегодняшний день способами построения являются Wi-Fi и WiMAX.

Wi-Fi и WiMAX

Сопоставления WiMAX и Wi-Fi далеко не редкость - термины созвучны, название стандартов, на которых основаны эти технологии, похожи (стандарты разработаны IEEE, оба начинаются с «802.»), а также обе технологии используют беспроводное соединение и используются для подключения к интернету (каналу обмена данными). Но, несмотря на это, эти технологии направлены на решение совершенно различных задач.

WiMAX - это система дальнего действия, покрывающая километры пространства, которая обычно использует лицензированные спектры частот (хотя возможно и использование нелицензированных частот) для предоставления соединения с интернетом типа точка-точка провайдером конечному пользователю. Разные стандарты семейства 802.16 обеспечивают разные виды доступа, от мобильного (схож с передачей данных с мобильных телефонов) до фиксированного (альтернатива проводному доступу, при котором беспроводное оборудование пользователя привязано к местоположению).

Wi-Fi - это система более короткого действия, обычно покрывающая десятки метров, которая использует нелицензированные диапазоны частот для обеспечения доступа к сети. Обычно Wi-Fi используется пользователями для доступа к их собственной локальной сети, которая может быть и не подключена к Интернету. Если WiMAX можно сравнить с мобильной связью, то Wi-Fi скорее похож на стационарный беспроводной телефон.

WiMAX и Wi-Fi имеют совершенно разный механизм Quality of Service (QoS). WiMAX использует механизм, основанный на установлении соединения между базовой станцией и устройством пользователя. Каждое соединение основано на специальном алгоритме планирования, который может гарантировать параметр QoS для каждого соединения. Wi-Fi, в свою очередь, использует механизм QoS подобный тому, что используется в Ethernet, при котором пакеты получают различный приоритет. Такой подход не гарантирует одинаковый QoS для каждого соединения.

Из-за дешевизны и простоты установки, Wi-Fi часто используется для предоставления клиентам быстрого доступа в Интернет различными организациями. Например, в некоторых кафе, отелях, вокзалах и аэропортах можно обнаружить бесплатную точку доступа Wi-Fi.

Организация сети

......Стандарт IEEE 802.11 работает на двух нижних уровнях модели ISO/OSI: физическом и канальном. Другими словами, использовать оборудование Wi-Fi так же просто, как и Ethernet: протокол TCP/IP накладывается поверх протокола, описывающего передачу информации по каналу связи. Расширение IEEE 802.11b не затрагивает канальный уровень и вносит изменения в IEEE 802.11 только на физическом уровне.

В беспроводной локальной сети есть два типа оборудования: клиент (обычно это компьютер, укомплектованный беспроводной сетевой картой, но может быть и иное устройство) и точка доступа, которая выполняет роль моста между беспроводной и проводной сетями. Точка доступа содержит приемопередатчик, интерфейс проводной сети, а также встроенный микрокомпьютер и программное обеспечение для обработки данных.

Типы и разновидности соединений

Соединение Ad-Hoc (точка-точка).

Все компьютеры оснащены беспроводными картами (клиентами) и соединяются напрямую друг с другом по радиоканалу работающему по стандарту 802.11b и обеспечивающих скорость обмена 11 Mбит/с, чего вполне достаточно для нормальной работы.

Инфраструктурное соединение.

Все компьютеры оснащены беспроводными картами и подключаются к точке доступа. Которая, в свою очередь, имеет возможность подключения к проводной сети. Данная модель используется когда необходимо соединить больше двух компьютеров. Сервер с точкой доступа может выполнять роль роутера и самостоятельно распределять интернет-канал.

Точка доступа, с использованием роутера и модема.

Точка доступа включается в роутер, роутер - в модем (эти устройства могут быть объединены в два или даже в одно). Теперь на каждом компьютере в зоне действия Wi-Fi , в котором есть адаптер Wi-Fi, будет работать интернет.

Соединение мост.

Компьютеры объединены в проводную сеть. К каждой группе сетей подключены точки доступа, которые соединяются друг с другом по радио каналу. Этот режим предназначен для объединения двух и более проводных сетей. Подключение беспроводных клиентов к точке доступа, работающей в режиме моста невозможно.

Репитер.

Точка доступа просто расширяет радиус действия другой точки доступа, работающей в инфраструктурном режиме.

Заключение

Беспроводные локальные сети (WLAN – wireless LAN) могут использоваться в офисе для подключения мобильных сотрудников (ноутбуки, носимые терминалы) в местах скопления пользователей - аэропортах, бизнес-центрах, гостиницах и т. д.

Мобильный Интернет и мобильные локальные сети открывают корпоративным и домашним пользователям новые сферы применения карманных ПК, ноутбуков. Одновременно с этим постоянно снижаются цены на беспроводное оборудование Wi-Fi и расширяется его ассортимент. Wi-Fi также подходит для людей, которым по долгу необходимо перемещаться по помещению, к примеру, на складе или в магазине. В этом случае для учета (отгрузки, приема и т. п.) товаров используются носимые терминалы, которые постоянно соединены с корпоративной сетью по протоколу Wi-Fi, и все изменения сразу отражаются в центральной базе данных. WLAN применим и в организации временных сетей, когда долго и нерентабельно прокладывать провода, а потом их демонтировать.

Еще один вариант использования – в исторических постройках, где прокладка проводов невозможна или запрещена. Иногда не хочется портить внешний вид помещения проводами или коробами для их прокладки. Кроме того, Wi-Fi-протокол подходит и для бытового применения, где тем более неудобно прогладывать провода.

Список использованной литературы

Главная > Учебно-методическое пособие

Высокоскоростные сетевые технологии

Классический 10-мегабитный Ethernet устраивал большинство пользователей на протяжении 15 лет. Однако в настоящее время стала ощущаться его недостаточная пропускная способность. Это происходит по разным причинам:

    повышение производительности клиентских компьютеров; увеличение числа пользователей в сети; появление мультимедийных приложений; увеличение числа сервисов, работающих в реальном масштабе времени.

Поэтому многие сегменты 10-мегабитного Ethernet стали перегруженными, а частота возникновения коллизий существенно возросла, еще более снижая полезную пропускную способность.

Для повышения пропускной способности сети можно применить несколько способов: сегментацию сети с помощью мостов и маршрутизаторов; сегментацию сети с помощью коммутаторов; общее повышение пропускной способности самой сети, т.е. применение высокоскоростных сетевых технологий.

В высокоскоростных технологиях компьютерных сетей используются такие типы сетей, как FDDI (Fiber-optic Distributed Data Interface – оптоволоконный распределенный интерфейс передачи данных), CDDI (Copper Distributed Data Interface – проводной распределенный интерфейс передачи данных), Fast Ethernet (100 Мбит/с), 100GV-AnyLAN, ATM (Asynchronous Transfer Method – асинхронный метод передачи), Gigabit Ethernet.

Сети FDDI и CDDI

Волоконно-оптические сети FDDI позволяют решить следующие задачи:

    повысить скорость передачи до 100 Мбит/с; повысить помехоустойчивость сети за счет стандартных процедур восстановления ее после отказов различного рода; максимально эффективно использовать пропускную способность сети как для асинхронного, так и для синхронного трафика.

Для этой архитектуры Американский институт национальных стандартов ANSI (American National Standard Institute) в 80-х годах разработал стандарт X3T9.5. К 1991 г. технология FDDI надежно закрепилась в мире сетей.

Хотя стандарт FDDI изначально был разработан для использования волоконной оптики, позднейшие исследования дали возможность перенести эту надежную высокоскоростную архитектуру на неэкранированные и экранированные витые кабели. В результате компания Crescendo разработала интерфейс CDDI, позволивший реализовать технологию FDDI на медных витых парах, которая оказалась на 20-30% дешевле FDDI. Технология CDDI была стандартизована в 1994 г., когда многие потенциальные заказчики осознали, что технология FDDI слишком дорогая.

Протокол FDDI (X3T9.5) работает по схеме передачи маркера в логическом кольце на оптоволоконных кабелях. Он задумывался так, чтобы максимально соответствовать стандарту IEEE 802.5 (Token Ring) - различия имеются только там, где это необходимо для реализации большей скорости обмена данными и способности перекрытия больших расстояний передачи.

В то время как стандарт 802.5 определяет наличие одного кольца, сеть FDDI использует в одном кабеле два противоположно направленных кольца (первичное и вторичное), соединяющих узлы сети. Данные можно пересылать по обоим кольцам, но в большинстве сетей они посылаются только по первичному кольцу, а вторичное кольцо зарезервировано, обеспечивая отказоустойчивость и избыточность сети. В случае отказа, когда часть первичного кольца не может передавать данные, первичное кольцо замыкается на вторичное, вновь образуя замкнутое кольцо. Этот режим работы сети называется Wrap , т.е. «свертыванием» или «сворачиванием» колец . Операция свертывания производится средствами концентраторов или сетевых адаптеров FDDI. Для упрощения этой операции данные по первичному кольцу всегда передаются в одном направлении, в по вторичному – в обратном.

В стандартах FDDI много внимания уделяется различным процедурам, которые позволяют определить наличие отказа в сети, а затем произвести необходимую реконфигурацию. Сеть FDDI может полностью восстанавливать свою работоспособность в случае единичных отказов ее элементов, а при множественных отказах сеть распадается на несколько работоспособных, но не связанных между собой сетей.

В сети FDDI могут существовать узлы 4-х типов:

· станции одиночного подключения SAS (Single Attachment Stations); · станции двойного подключения DAS (Dual Attachment Stations); · концентраторы одиночного подключения SAC (Single Attachment Concentrators); · концентраторы двойного подключения DAC (Dual Attachment Concentrators).

SAS и SAC подключаются к только одному из логических колец, а DAS и DAC - к обоим логическим кольцам одновременно и могут справиться со сбоем в одном из колец. Обычно концентраторы имеют двойное подключение, а станции – одинарное, хотя это и не обязательно.

Вместо манчестерского кода в FDDI используется схема кодирования 4В/5В, перекодирующая каждые 4 бита данных в 5-битовые кодовые комбинации. Избыточный бит позволяет применить для представления данных в виде электрических или оптических сигналов самосинхронизирующийся потенциальный код. Кроме того, наличие запрещенных комбинаций позволяет отбраковывать ошибочные символы, что улучшает надежность сети.

Т.к. из 32-х комбинаций кода 5B для кодирования исходных 4 бит данных используется только 16 комбинаций, то из оставшихся 16 было выбрано несколько комбинаций, которые используются для служебных целей и образуют некий язык команд физического уровня. К наиболее важным служебным символам относится символ Idle (простаивать), который постоянно передается между портами в течение пауз между передачами кадров данных. За счет этого станции и концентраторы имеют постоянную информацию о состоянии физических соединений своих портов. В случае отсутствия потока символов Idle фиксируется отказ физической связи и производится реконфигурация внутреннего пути концентратора или станции, если это возможно.

Станции FDDI применяют алгоритм раннего освобождения маркера, как и сети Token Ring 16 Мбит/с. Существуют два основных различия в работе с маркером в протоколах FDDI и IEEE 802.5 Token Ring. Во-первых, время удержания маркера доступа в сети FDDI зависит от загрузки первичного кольца: при небольшой загрузке оно увеличивается, а при больших загрузках может уменьшаться до нуля (для асинхронного трафика). Для синхронного трафика время удержания маркера остается постоянной величиной. Во-вторых, FDDI не использует областей приоритета и резервирования. Вместо этого в FDDI каждая станция классифицируется как асинхронная или синхронная. При этом синхронный трафик обслуживается всегда, даже при перегрузках кольца.

В FDDI используется интегрированное управление станцией модулями STM (Station Management). STM присутствует на каждом узле сети FDDI в виде программного или микропрограммного модуля. SMT отвечает за мониторинг каналов данных и узлов сети, в частности, за управление соединениями и конфигурацией. Каждый узел в сети FDDI действует как повторитель. SMT действует аналогично управлению, предоставляемому протоколом SNMP, однако STM располагается на физическом уровне и подуровне канального уровня.

При использовании многомодового оптического кабеля (самой распространенной среды передачи FDDI) расстояние между станциями составляет до 2 км, при использовании одномодового оптического кабеля – до 20 км. В присутствии повторителей максимальная протяженность сети FDDI может достигать 200 км и содержать до 1000 узлов.

Формат маркера FDDI:

Преамбула

Начальный
разделитель SD

Контроль
пакета FC

Концевой
разделитель ED

Статус
пакета FS

Формат пакета FDDI:

Преамбула

Преамбула предназначена для синхронизации. Несмотря на то, что изначально его длина равна 64 битам, узлы могут динамически изменять ее в соответствии со своими требованиями к синхронизации.

Начальный разделитель SD . Уникальное однобайтовое поле, предназначенное для идентификации начала пакета.

Контроль пакета FC . Однобайтовое поле вида CLFFTTTT, где бит С устанавливает класс пакета (синхронный или асинхронный обмен), бит L - индикатор длины адреса пакета (2 или 6 байт). Допускается использование в одной сети адресов и той, и другой длины. Биты FF (формат пакета) определяют, принадлежит ли пакет подуровню МАС (т.е. предназначен для целей управления кольцом) или подуровню LLC (для передачи данных). Если пакет является пакетом подуровня МАС, то биты ТТТТ определяют тип пакета, содержащего данные в поле Info.

Назначение DA . Определяет узел назначения.

Источник SA . Определяет узел, передавший пакет.

Информация Info . Это поле содержит данные. Они могут быть данными типа МАС или данными пользователя. Длина этого поля переменная, но ограничена максимальной длиной пакета в 4500 байт.

Контрольная сумма пакета FCS . Содержит CRC - сумму.

Концевой разделитель ED . Имеет длину полбайта для пакета и байт для маркера. Идентифицирует конец пакета или маркера.

Статус пакета FS . Это поле произвольной длины и содержит биты “Обнаружена ошибка”, “Адрес опознан”, “Данные скопированы”.

Самая очевидная причина дороговизны FDDI связана с использованием оптоволоконного кабеля. Свой вклад в дороговизну сетевых плат FDDI сделала также их сложность (дающая такие достоинства, как встроенное управление станцией, избыточность).

Характеристики сети FDDI

Fast Ethernet и 100GV-AnyLAN

В процессе разработки более производительной сети Ethernet специалисты разделились на два лагеря, что в конце концов привело к появлению двух новых технологий локальных сетей – Fast Ethernet и 100VG-AnyLAN.

Около 1995 г. обе технологии стали стандартами IEEE. Комитет IEEE 802.3 принял спецификацию Fast Ethernet в качестве стандарта 802.3u, который не является самостоятельным стандартом, а является дополнением к стандарту 802.3 в виде глав с 21 по 30.

Комитет 802.12 принял технологию 100VG-AnyLAN, которая использует новый метод доступа к среде передачи Demand Priority и поддерживает кадры двух форматов – Ethernet и Token Ring.

Fast Ethernet

Все отличия технологии Fast Ethernet от стандартной Ethernet сосредоточены на физическом уровне. Уровни MAC и LLC в Fast Ethernet по сравнению с Ethernet остались неизменными.

Более сложная структура физического уровня технологии Fast Ethernet вызвана тем, что в ней используется три варианта кабельных систем:

    волоконно-оптический многомодовый кабель (используются два волокна); витая пара категории 5 (используются две пары); витая пара категории 3 (используются четыре пары).

Коаксиальный кабель в Fast Ethernet вообще не используется. Отказ от коаксиального кабеля привел к тому, что сети Fast Ethernet всегда имеют иерархическую древовидную структуру, построенную на концентраторах, как и сети 10Base-T/10Base-F. Основным отличием конфигураций сетей Fast Ethernet является сокращение диаметра сети до 200 м, что связано с 10-кратным уменьшением времени передачи кадра минимальной длины из-за увеличения скорости передачи.

Тем не менее, это ограничение не очень препятствует построению крупных сетей Fast Ethernet в связи с бурным развитием в 90-х годах локальных сетей на основе коммутаторов. При использовании коммутаторов протокол Fast Ethernet может работать в полнодуплексном режиме, в котором нет ограничений на общую длину сети, накладываемых способом доступа к среде передачи CSMA/CD, а остаются только ограничения на длину физических сегментов.

Ниже рассматривается полудуплексный вариант работы технологии Fast Ethernet, который полностью соответствует методу доступа, описанному в стандарте 802.3.

Официальный стандарт 802.3u установил три различных спецификации Fast Ethernet и дал им следующие названия:

    100Base-TX для двухпарного кабеля на неэкранированной витой паре UTP категории 5 или экранированной витой паре STP Type 1; 100Base-FX для многомодового оптоволоконного кабеля с двумя волокнами и длиной волны лазера 1300 нм; 100Base-T4 для 4-парного кабеля на неэкранированной витой паре UTP категорий 3, 4 или 5.

Для всех трех стандартов справедливы следующие общие утверждения:

    Форматы кадров Fast Ethernet не отличаются от форматов кадров классического 10-мегабитного Ethernet; Межкадровый интервал IPG в Fast Ethernet равен 0,96 мкс, а битовый интервал – 10 нс. Все временные параметры алгоритма доступа, измеренные в битовых интервалах, остались прежними, поэтому изменения в разделы стандарта, касающиеся уровня MAC, не вносились; Признаком свободного состояния среды является передача по ней символа Idle соответствующего избыточного кода (а не отсутствие сигнала, как в стандарте Ethernet).

Физический уровень включает три компонента:

    подуровень согласования (Reconciliation Sublayer); независимый от среды передачи интерфейс MII (Media Independent Interface ) между уровнем согласования и устройством физического уровня; устройство физического уровня (Physical Layer Device – PHY).

Подуровень согласования нужен для того, чтобы уровень MAC, рассчитанный на интерфейс AUI, мог работать нормально с физическим уровнем через интерфейс MII.

Устройство физического уровня PHY обеспечивает кодирование данных, поступающих от MAC – подуровня для передачи их по кабелю определенного типа, синхронизацию передаваемых по кабелю данных, а также прием и декодирование данных в узле - приемнике. Оно состоит из нескольких подуровней (рис.19):

    подуровня логического кодирования данных, преобразующего поступающие от уровня MAC байты в символы кода 4B/5B или 8B/6T; подуровней физического присоединения и подуровня зависимости от физической среды, обеспечивающих формирование сигналов в соответствии с методом физического кодирования, например, NRZI или MLT-3; подуровня автопереговоров, который позволяет всем взаимодействующим портам выбрать наиболее эффективный режим работы, например, полудуплексный или полнодуплексный (этот подуровень является факультативным).

Интерфейс MII . MII представляет собой спецификацию сигналов TTL-уровня и использует 40-контактный разъем. Существует два варианта реализации интерфейса MII: внутренний и внешний.

При внутреннем варианте микросхема, реализующая подуровни MAC и согласования, с помощью интерфейса MII соединяется с микросхемой трансивера внутри одного и того же конструктива, например, платы сетевого адаптера или модуля маршрутизатора. Микросхема трансивера реализует все функции устройства PHY. При внешнем варианте трансивер выделен в отдельное устройство и подсоединяется с помощью кабеля MII.

Интерфейс MII использует 4-битные порции данных для параллельной передачи их между подуровнями MAC и PHY. Каналы передачи и приема данных от MAC к PHY и наоборот синхронизируются тактовым сигналом, генерируемым уровнем PHY. Канал передачи данных от MAC к PHY стробируется сигналом «Передача», а канал приема данных от PHY к MAC - сигналом «Прием».

Данные о конфигурации порта хранятся в двух регистрах: регистре управления и регистре статуса. Регистр управления используется для установки скорости работы порта, для указания, будет ли порт принимать участие в процессе автопереговоров о скорости линии, для задания режима работы порта (полу- или полнодуплексный).

Регистр статуса содержит информацию о действительном текущем режиме работы порта, в том числе и о том, какой режим выбран в результате автопереговоров.

Физический уровень спецификаций 100 Base - FX / TX . Эти спецификации определяют работу протокола Fast Ethernet по многомодовому оптоволоконному кабелю или кабелям UTP кат.5/STP Type 1 в полудуплексном и полнодуплексном режимах. Как и в стандарте FDDI, каждый узел здесь соединяется с сетью двумя разнонаправленными сигнальными линиями, идущими от приемника и от передатчика узла соответственно.

Рис.19. Отличия технологии Fast Ethernet от технологии Ethernet

В стандартах 100Base-FX/TX на подуровне физического присоединения используется один и тот же метод логического кодирования 4B/5B, куда он без изменения перенесен из технологии FDDI. Для отделения начала кадра Ethernet от символов простоя Idle используются запрещенные комбинации Start Delimiter и End Delimiter.

После преобразования 4-битовых тетрад кода в 5-битовые комбинации последние необходимо представить в виде оптических или электрических сигналов в кабеле, соединяющем узлы сети. Спецификации 100Base-FX и 100Base-TX используют для этого различные методы физического кодирования.

Спецификация 100Base-FX использует потенциальный физический код NRZI. Код NRZI (Non Return to Zero Invert to ones – без возврата к нулю с инвертированием единиц) является модификацией простого потенциального кода NRZ (в котором для представления логического 0 и 1 используются два уровня потенциала).

В методе NRZI также используются два уровня потенциала сигнала. Логические 0 и 1 в методе NRZI кодируются следующим образом (рис.20): в начале каждого единичного битового интервала значение потенциала на линии инвертируется, если же текущий бит равен 0, то в его начале потенциал на линии не изменяется.

Рис.20. Сравнение потенциальных кодов NRZ и NRZI.

Спецификация 100Base - TX для передачи по витой паре 5-битовых кодовых комбинаций использует код MLT-3, позаимствованный из технологии CDDI. В отличие от кода NRZI этот код является трехуровневым (рис.21) и является усложненным вариантом кода NRZI. В коде MLT-3 используются три уровня потенциала (+V, 0, -V), при передаче 0 значение потенциала на границе битового интервала не изменяется, при передаче 1 изменяется на соседние по цепочке +V, 0, -V, 0, +V и т.д.


Рис.21. Метод кодирования MLT-3.

Кроме использования метода MLT-3 спецификация 100Base - TX отличается от спецификации 100Base - FX также и тем, что в ней используется скремблирование. Скремблер обычно представляет собой комбинационную схему на элементах «Исключающее ИЛИ», которая перед кодированием MLT-3 зашифровывает последовательность 5-битовых кодовых комбинаций таким образом, чтобы энергия результирующего сигнала равномерно распределилась по всему частотному спектру. Это улучшает помехозащищенность, т.к. слишком сильные составляющие спектра вызывают нежелательные помехи на соседние линии передачи и излучение в окружающую среду. Дескремблер в узле - приемнике выполняет обратную функцию дескремблирования, т.е. восстановления исходной последовательности 5-битовых комбинаций.

Спецификация 100 Base - T 4 . Эта спецификация была разработана для того, чтобы можно было использовать в Fast Ethernet имеющуюся проводку на витой паре категории 3. Спецификация 100Base-T4 использует все четыре витых пары кабеля для того, чтобы повысить общую пропускную способность канала связи за счет одновременной передачи потоков данных по всем витым парам. Кроме двух однонаправленных пар, используемых в 100Base – TX, здесь две дополнительные пары являются двунаправленными и служат для распараллеливания передачи данных. Кадр передается по трем линиям побайтно и параллельно, что позволяет снизить требование к пропускной способности одной линии до 33.3 Мбит/с. Каждый байт, передаваемый по конкретной паре, кодируется шестью троичными цифрами в соответствии с методом кодирования 8B/6T. В результате при битовой скорости 33.3 Мбит/с скорость изменения сигнала в каждой линии составляет 33.3*6/8 = 25 Мбод, что укладывается в полосу пропускания (16 МГц) кабеля UTP кат.3.

Четвертая витая пара во время передачи используется для прослушивания несущей частоты в целях обнаружения коллизий.

В домене коллизий Fast Ethernet, который не должен превышать 205 м, допускается использовать не более одного повторителя класса I (транслирующий повторитель, поддерживающий разные схемы кодирования, принятые в технологиях 100Base-FX/TX/T4, задержка 140 bt) и не более двух повторителей класса II (прозрачный повторитель, поддерживающий только одну из схем кодирования, задержка 92 bt). Таким образом, правило 4-х хабов превратилось в технологии Fast Ethernet в правило одного или двух хабов, в зависимости от класса хаба.

Небольшое количество повторителей в Fast Ethernet не является серьезным препятствием при построении больших сетей, т.к. применение коммутаторов и маршрутизаторов делит сеть на несколько доменов коллизий, каждый из которых строится на одном или двух повторителях.

Автопереговоры по режиму работы порта . Спецификации 100Base-TX/T4 поддерживают функцию автопереговоров Autonegotiation, с помощью которой два устройства PHY могут автоматически выбрать наиболее эффективный режим работы. Для этого предусмотрен протокол согласования режимов , по которому порт может выбрать самый эффективный из режимов, доступных обоим участникам обмена.

Всего в настоящее время определено 5 режимов работы, которые могут поддерживать устройства PHY TX/T4 на витых парах:

    10Base-T (2 пары категории 3); 10Base-T full duplex (2 пары категории 3); 100Base-TX (2 пары категории 5 или STP Type 1); 100Base-TX full duplex (2 пары категории 5 или STP Type 1); 100Base-T4 (4 пары категории 3).

Режим 10Base-T имеет самый низкий приоритет в переговорном процессе, а режим 100Base-T4 – самый высокий. Переговорный процесс происходит при включении источника питания устройства, а также может быть инициирован в любой момент времени устройством управления.

Устройство, начавшее процесс автопереговоров, посылает своему партнеру специальную пачку импульсов FLP (Fast Link Pulse burst ), в которой содержится 8-битовое слово, кодирующее предлагаемый режим взаимодействия, начиная с самого приоритетного, поддерживаемого данным узлом.

Если узел-партнер поддерживает функцию автопереговоров и способен поддерживать предлагаемый режим, то он отвечает своей пачкой импульсов FLP, в которой подтверждает данный режим и на этом переговоры заканчиваются. Если же узел-партнер поддерживает менее приоритетный режим, то он указывает его в ответе и этот режим выбирается в качестве рабочего.

Узел, который поддерживает только технологию 10Base-T, каждые 16 мс посылает импульсы теста связности, и не понимает запрос FLP. Узел, получивший в ответ на свой запрос FLP только импульсы проверки целостности линии, понимает, что его партнер может работать только по стандарту 10Base-T и устанавливает этот режим работы и для себя.

Полнодуплексный режим работы . Узлы, поддерживающие спецификации 100Base FX/TX, могут работать и в полнодуплексном режиме. В этом режиме не используется метод доступа к среде передачи CSMA/CD и отсутствует понятие коллизий. Полнодуплексная работа возможна только при соединении сетевого адаптера с коммутатором, или же при непосредственном соединении коммутаторов.

100VG-AnyLAN

Технология 100VG-AnyLAN отличается от классической Ethernet принципиальным образом. Главные различия между ними состоят в следующем:

    используется метод доступа к среде передачи Demand Priority – приоритетное требование , который обеспечивает значительно более справедливое распределение пропускной способности сети по сравнению с методом CSMA/CD для синхронных приложений; кадры передаются не всем станциям сети, а только станции назначения; в сети есть выделенный арбитр доступа – центральный концентратор, и это заметно отличает данную технологию от других, в которых используется распределенный алгоритм доступа; поддерживаются кадры двух технологий – Ethernet и Token Ring (отсюда в названии AnyLAN). Сокращение VG означает Voice-Grade TP – витая пара для голосовой телефонии; данные передаются в одну сторону одновременно по 4-м витым парам UTP категории 3, полный дуплекс невозможен.

Для кодирования данных применяется логический код 5B/6B, который обеспечивает спектр сигнала в диапазоне до 16 МГц (полоса пропускания UTP категории 3) при битовой скорости 30 Мбит/с в каждой линии. В качестве физического способа кодирования выбран код NRZ.

Сеть 100VG-AnyLAN состоит из центрального концентратора, называемого корневым, и соединенных с ним конечных узлов и других концентраторов. Допускаются три уровня каскадирования. Каждый концентратор или сетевой адаптер этой сети может быть настроен либо на работу с кадрами Ethernet, либо с кадрами Token Ring.

Каждый концентратор циклически выполняет опрос состояния своих портов. Станция, желающая передать пакет, посылает специальный сигнал концентратору, запрашивая передачу кадра и указывая его приоритет. В сети 100VG-AnyLAN используется два уровня приоритетов – низкий и высокий. Низкий уровень соответствует обычным данным (файловая служба, служба печати и др.), а высокий приоритет соответствует данным, чувствительным к временным задержкам (например, мультимедиа).

Приоритеты запросов имеют статическую и динамическую составляющие, т.е. станция с низким уровнем приоритета, долго не имеющая доступа к сети, получает высокий приоритет за счет динамической составляющей.

Если сеть свободна, то концентратор разрешает узлу передачу пакета, а всем другим узлам посылает сигнал предупреждения о приходе кадра, по которому узлы должны переключиться в режим приема кадра (перестать посылать сигналы состояния). После анализа адреса получателя в принятом пакете концентратор отправляет пакет станции назначения. По окончании передачи кадра хаб посылает сигнал Idle, и узлы снова начинают передавать информацию о своем состоянии. Если сеть занята, то концентратор ставит полученный запрос в очередь, которая обрабатывается в соответствии с порядком поступления запросов и с учетом их приоритетов. Если к порту подключен другой концентратор, то опрос приостанавливается до завершения опроса концентратором нижнего уровня. Принятие решения о предоставлении доступа к сети выполняется корневым концентратором после проведения опроса портов всеми концентраторами сети.

При всей простоте этой технологии неясным остается один вопрос: каким образом концентратор узнает, к какому порту подключена станция назначения? Во всех других технологиях этот вопрос не возникал, т.к. кадр попросту передавался всем станциям сети, а станция назначения, распознав свой адрес, копировала принимаемый кадр в буфер.

В технологии 100VG-AnyLAN эта задача решается следующим образом - концентратор узнает MAC -–адрес станции в момент ее физического присоединения к сети кабелем. Если в других технологиях процедура физического присоединения выясняет связность кабеля (link test в технологии 10Base-T), тип порта (технология FDDI), скорость работы порта (автопереговоры в Fast Ethernet), то в технологии 100VG-AnyLAN при установлении физического соединения концентратор выясняет MAC-адрес подсоединяемой станции и запоминает его в своей таблице MAC-адресов, аналогичной таблице моста/коммутатора. Отличие концентратора 100VG-AnyLAN от моста или коммутатора состоит в том, что у него нет внутреннего буфера для хранения кадров. Поэтому он принимает от станций сети только один кадр и отправляет в порт назначения. Пока текущий кадр не будет принят получателем, новые кадры концентратор не принимает, так что эффект разделяемой среды сохраняется. Улучшается только безопасность сети, т.к. теперь кадры не попадают на чужие порты, и их труднее перехватить.

  • Конспект

    В настоящее время рынок российского туризма развивается крайне неравномерно. Объем выездного туризма преобладает над объемами въездного и внутреннего туризма.

  • Программа по педагогической практике (немецкий язык и английский язык): Учебно-методическое пособие для студентов IV и Vкурсов филологического факультета / Сост. Ариничева Л. А., Давыдова И. В. Тобольск: тгспа им. Д. И. Менделеева, 2011. 60 с

    Программа
  • Конспект лекций по дисциплине: «сетевая экономика» Количество разделов

    Конспект

    Появление интернет-технологий, позволяющих выстраивать деловые отношения в среде Интернет дает возможность говорить о возникновении нового образа экономики, которая может быть названа «сетевой» или «интернет-экономикой».

    • Сергей Савенков

      какой то “куцый” обзор… как будто спешили куда то