Современная спутниковая связь, спутниковые системы. Как работает спутниковая связь Использование спутниковой связи

На сегодняшний день существует два вида спутников: геостационарные и низкоорбитальные. Геостационарными называются спутники, находящиеся на геостационарной орбите.(Геостационарная орбита - это орбита, лежащая в плоскости экватора на высоте около 36 тыс. км над поверхностью Земли).

Спутник, находящийся на геостационарной орбите для земного наблюдателя кажется висящим неподвижно и это открывает возможности использования ИСЗ в качестве ретранслятора телевизионных передач. С произвольной точки земной поверхности, с которой виден геостационарный спутник, на него можно направлять электромагнитное излучение земного передатчика используются по возможности высокие частоты, порядка 75-100 Ггц (l 1 =3-4 мм) Применение более коротких длин волн ограничено сильным атмосферным поглощением в диапазоне 300 ГГц и выше Принятый на геостационарном спутнике на длине волныl 1 электромагнитный сигнал преобразуется в другую, более низкую частоту порядка 10 Ггц (l 2 = 3 см). Этот сигнал с помощью другой антенны спутника направляется на земную поверхность. Для облучения передатчиком спутника поверхности Земли, на спутнике не требуется антенна большого диаметра, так как это излучение должно быть "размазано" на большой площади, называемой зоной обслуживания. Важно, насколько спутник сохраняет свою геостационарную позицию на орбите. Если спутник дрейфует, то он выходит, частично или полностью, из поля зрения наземной приемной антенны. При этом телевизионный сигнал уменьшается, что проявляется в исчезновении изображения на экране телевизора и появления шума ("снега"). В таких случаях требуется корректировка ориентации наземной антенны - вручную или автоматически.

Геостационарные спутники выполняют на сегодняшний день множество задач, таких как: телекоммуникация, радиоместоопределение(системы навигации gps, глонасс и др.), главной задачей большинства геостационарных спутников является формирование изображений видимой земной поверхности. Спутниковые системы связи с геостационарными спутниками-ретрансляторами идеально подходят для решения таких задач, как организация телевизионного и звукового вещания на обширных территориях и предоставление высококачественных телекоммуникационных услуг абонентам в удаленных и труднодоступных регионах. Кроме того, с их помощью можно быстро создавать крупномасштабные корпоративные сети и резервировать наземные магистральные каналы связи большой протяженности. Также сейчас проводится создание мультисервисных сетей (объединяющих в едином пакете такие услуги, как передача данных, телефония, цифровое телевидение, видеоконференция и доступ в интернет) на основе технологии VSAT.Также важно подменить, что всего три геостационарных спутника способны охватить всю поверхность Земли. Но у геостационарных спутников также есть недостатки, наиболее важный из них: На геостационарной орбите нельзя располагать слишком большое количество спутников связи, так как иначе они начнут мешать работе друг другу. Следовательно, кроме геостационарных спутников, которые вскоре “заполонят” геостационарную орбиту нужно развивать и другие спутниковые системы-низкоорбитальные, что сейчас и происходит.Как правило, к низкоорбитальным системам спутниковой связи (ССС) (системы LEO) относят такие, для которых высота орбиты находится в пределах 700-1500 км, масса спутников до 500 кг, орбитальная группировка - от нескольких единиц до десятков спутников-ретрансляторов (СР). Низкоорбитальные системы позволяют обеспечить связь с терминалами, размещенными в полярных широтах, и практически не имеют альтернативы при организации связи в регионах со слаборазвитой инфраструктурой связи и низкой плотностью населения. Стоимость услуг подвижной связи низкоорбитальными системами оказывается в несколько раз дешевле аналогичных услуг, предоставляемых геостационарными системами за счет использования недорогих абонентских станций и менее дорогого космического сегмента. . Однако возникают сложности управления группировкой таких спутников и поддержания непрерывности связи.

И в заключения хочется сказать, что Современные оптико-телевизионные космические средства уже позволяют рассмотреть с орбиты предметы с размерами порядка метра и передать полученное изображение через спутники-ретрансляторы абонентам.

Доклад на тему:

Современная спутниковая связь, спутниковые системы.

Космическая или спутниковая связь по существу является разновидностью радиорелейной (тропосферной) связи и отличается тем, что ее ретрансляторы находятся не на поверхности Земли, а на спутниках в космическом пространстве.

Впервые идею спутниковой связи представил в 1945 году англичанин Артур Кларк. В радиотехническом журнале он опубликовал статью о перспективах ракет, подобных «Фау-2», для запуска спутников Земли в научных и практических целях. Знаменателен последний абзац этой статьи: «Искусственный спутник на определенном расстоянии от Земли будет совершать один оборот за 24 ч. Он будет оставаться неподвижным над определенным местом и в пределах оптической видимости почти с половины земной поверхности. Три ретранслятора, размещенные на правильно выбранной орбите с угловым разнесением на 120°, смогут покрыть телевидением и УКВ радиовещанием всю планету; я боюсь, что те, кто планирует послевоенные работы, не сочтут это дело простым, но я считаю именно этот путь окончательным решением проблемы».

4 октября 1957 г. в СССР был осуществлен запуск первого в мире искусственного спутника Земли, первого космического объекта, сигналы которого принимались на Земле. Этот спутник положил начало космической эры. Излучаемые спутником сигналы использовались не только для пеленгации, но и для передачи информации о процессах на спутнике (температура, давление и пр.). Эта информация передавалась путем изменения длительности посылок, излучаемых передатчиками (широтно-импульсная модуляция). 12 апреля 1961 г. в Советском Союзе впервые в истории человечества осуществлен полет человека в космическое пространство. Космический корабль «Восток» с летчиком-космонавтом Ю. А. Гагариным на борту был выведен на орбиту спутника Земли. Для измерения параметров орбиты корабля-спутника и контроля работы его бортовой аппаратуры на нем была установлена многочисленная измерительная и радиотелеметрическая аппаратура. Для пеленгации корабля и передачи телеметрической информации использовалась радиосистема «Сигнал», работавшая на частоте 19,955 МГц. Двусторонняя связь космонавта с Землей обеспечивалась радиотелефонной системой, работавшей в диапазонах коротких (19,019 и 20,006 МГц) и ультракоротких (143,625 МГц) волн. Телевизионная система осуществляла передачу на Землю изображения космонавта, что позволяло иметь визуальный контроль за его состоянием. Одна из телевизионных камер передавала изображение пилота в анфас, а другая – сбоку .

Достижения отечественной науки в области освоения космического пространства позволили осуществить предсказания Артура Кларка. В конце 50-х годов прошлого века в СССР и США начали проводиться экспериментальные исследования возможностей использования искусственных спутников Земли в качестве радиоретрансляторов (активных и пассивных) в наземных системах связи. Теоретические разработки в области энергетических возможностей линий спутниковой связи позволили сформулировать тактико-технические требования к устройствам спутникового ретранслятора и наземных устройств, исходя из реальных характеристик технических средств, существовавших в то время .

Учитывая идентичность подходов, экспериментальные исследования в области создания линий спутниковой связи представим на примере США . Первый активный радиоретранслятор «Score» был запущен 18 декабря 1958 года на наклонную эллиптическую орбиту с высотой апогея 1481 км, перигея 177 км. Аппаратура спутника состояла из двух приемопередатчиков, работавших на частотах 132.435 и 132.095 МГц. Работа производилась в режиме замедленной ретрансляции. Запоминание сигнала, посланного наземной передающей станцией, производилась путем записи на магнитную ленту. В качестве источников питания применялись серебряно-цинковые аккумуляторы емкостью 45 ампер – час при напряжении 18 вольт. Продолжительность связи составляла приблизительно 4 мин за 1 оборот спутника. Производилась ретрансляция 1 телефонного или 7 телетайпных каналов. Срок службы спутника равнялся 34 дням. Спутник сгорел при входе в атмосферу 21 января 1959 года. Второй активный радиоретранслятор «Курьер» был запущен 4 октября 1960 года на наклонную эллиптическую орбиту с высотой апогея 1270 км и перигея 970 км. Аппаратура спутника состояла из 4 приемопередатчиков (частота 150 МГц для передачи команд и 1900 МГц для связи), устройства магнитной памяти и источников питания – солнечных элементов и химических батарей. В качестве первичного источника питания использовались кремниевые солнечные элементы в количестве 19 152 штук. В качестве буферного каскада применялись никель-кадмиевые батареи емкостью 10 ампер – час при напряжении 28-32 вольта. Продолжительность сеанса связи составляла 5 мин за один оборот спутника. Срок службы спутника составил 1 год. 10 июля 1962 года на наклонную эллиптическую орбиту с апогеем 5600 км и перигеем 950 км был запущен активный ретранслятор «Телстар», который предназначался для активной ретрансляции радиосигналов в реальном масштабе времени. Одновременно он ретранслировал или 600 симплексных телефонных каналов, или 12 дуплексных телефонных каналов, или один телевизионный канал. Во всех случаях работа производилась по способу частотной модуляции. Частоты связи: на линии спутник – Земля 4169,72 МГц, на линии Земля – спутник 6389,58 МГц. Продолжительность сеанса связи на линии США – Европа через этот спутник составляла около 2 часов в сутки. Качество передаваемых телевизионных изображений менялось от хорошего до отличного. По проекту предусматривался весьма значительный срок службы спутника –2 года, однако после четырех месяцев успешной работы отказала командная линия. Было установлено, что причинной отказа явились поверхностные повреждения вследствие действия радиации при прохождении спутником внутреннего радиационного пояса.

14 февраля 1963 года был запущен первый синхронный спутник системы «Синком» с параметрами орбиты: высота апогея 37 022 км, высота перигея 34185, период обращения 1426,6 минут. Рабочая частота на линии Земля – спутник равна 7360 МГц, на линии спутник – Земля 1820 МГц. В качестве первичного источника питания на спутнике использовались солнечные элементы в количестве 3840 штук общей мощностью 28 Вт при напряжении 27,5 вольт. Связь со спутником поддерживалась только 20 077 секунд, после чего наблюдения велись астрономическими методами.

23 апреля 1965 г. в СССР был запущен первый спутник связи «Молния-1». С запуском второго спутника связи «Молния-2» 14 октября 1965 г. началась регулярная эксплуатация линии дальней связи через ИСЗ. Позднее была создана система дальней космической связи «Орбита». Она состояла из сети наземных станций и искусственных спутников Земли «Молния», «Радуга», «Горизонт». Ниже, в главе 7, будет показано, что модификации спутников «Горизонт» продолжают функционировать и в XXI веке. Это говорит о высокой надежности отечественной техники по сравнению с зарубежной.

Первые станции спутниковой связи были построены, испытаны и введены в эксплуатацию в подмосковном г. Щелково и в Уссурийске. Кабельными и релейными линиями связи они соединялись соответственно с телецентрами и телефонными междугородными станциями Москвы и Владивостока.

Наиболее подходящей для оборудования земных станций спутниковой системы оказалась аппаратура тропосферной связи ТР-60/120, в которой, как известно, использовались передатчики большой мощности и высокочувствительные приемные устройства с малошумящими параметрическими усилителями. На ее основе разрабатывается приемно-передающий комплекс «Горизонт», устанавливаемый на наземных станциях первой линии спутниковой связи между Москвой и Владивостоком.

Специально были разработаны передатчики для связной и командно-измерительной линии, параметрические усилители с температурой шума 120 К для установки в подзеркальной кабине антенны, а также совершенно новое оборудование, обеспечивающее стыковку с местными телецентрами и междугородными телефонными станциями.

В те годы проектировщики земной станции, боясь влияния мощных передатчиков на приемники, устанавливали их на разных антеннах и в разных зданиях (приемном и передающем). Однако опыт использования одной общей антенны для приема и передачи, полученный на линиях тропосферной связи, позволил в дальнейшем перенести приемное оборудование на передающую антенну, что значительно упростило и удешевило эксплуатацию станций спутниковой связи.

В 1967 г. через спутник связи «Молния-1» создана разветвленная телевизионная сеть приемных земных станций «Орбита» с центральной передающей станцией под Москвой. Это позволило организовать первые каналы связи между Москвой и Дальним Востоком, Сибирью, Средней Азией, передавать программу Центрального телевидения в отдаленные районы нашей Родины и дополнительно охватить более 30 млн телезрителей.

Однако спутники «Молния» вращались вокруг Земли по вытянутым эллиптическим орбитам . Для слежения за ними антенны наземных приемных станций должны постоянно поворачиваться. Гораздо проще решают эту задачу спутники, вращающиеся по стационарной круговой орбите, которая находится в плоскости экватора на высоте 36 000 км. Они совершают один оборот вокруг Земли за 24 часа и поэтому кажутся наземному наблюдателю висящими неподвижно над одной точкой нашей планеты. Трех таких спутников достаточно для обеспечения связью всей Земли.

В 80-е годы прошлого века эффективно функционировали работающие на стационарных орбитах спутники связи «Радуга» и телевизионные спутники «Экран». Для приема их сигналов не нужны были сложные наземные станции. Телевизионные передачи с таких спутников принимаются прямо на несложные коллективные, и даже индивидуальные антенны.

В 1980-е годы началось развитие персональной спутниковой связи. При этой связи спутниковый телефон непосредственно соединяется со спутником, находящимся на околоземной орбите. Со спутника сигнал поступает на наземную станцию, откуда передается в обычную телефонную сеть. Число спутников, необходимое для стабильной связи в любой точке планеты, зависит от радиуса орбиты той или иной системы спутников.

Основной недостаток персональной спутниковой связи – ее относительная дороговизна по сравнению с сотовой связью. Кроме того, в спутниковые телефоны встраиваются передатчики большой мощности. Поэтому они считаются небезопасными для здоровья пользователей.

Самые надежные спутниковые телефоны работают в сети Инмарсат, созданной более 20 лет назад. Спутниковые телефоны системы Инмарсат представляют собой чемоданчик с откидной крышкой размером с первые портативные компьютеры. Крышка спутникового телефона по совместительству является и антенной, которую необходимо поворачивать по направлению к спутнику (на дисплее телефона отображается уровень сигнала). В основном такие телефоны используются на судах, поездах или большегрузных автомобилях. Каждый раз, когда необходимо позвонить или ответить на чей-то звонок, нужно будет устанавливать спутниковый телефон на какую-нибудь ровную поверхность, раскрывать крышку и крутить его, определяя направление максимального сигнала.

В настоящее время в общем балансе связи на спутниковые системы пока приходится примерно 3 % мирового трафика. Но потребности в спутниковых линиях продолжают расти, поскольку при дальности свыше 800 км спутниковые каналы становятся экономически более выгодными по сравнению с другими видами дальней связи.

СОВРЕМЕННЫЕ СПУТНИКИ И СПУТНИКОВЫЕ СИСТЕМЫ

Основные типы спутников

В современном мире жители нашей планеты уже активно пользуются достижениями космических технологий. Научные спутники, такие, как космический телескоп "Хаббл" , демонстрируют нам все величие и необъятность окружающего нас пространства, чудеса, происходящие как в отдаленных уголках Вселенной, так и в ближайшем космосе.

Активное использование получили спутники связи, подобные, например, "Гэлакси XI". С их участием обеспечивается международная и мобильная телефонная связь и, конечно, спутниковое телевидение. Спутники связи играют огромную роль в распространении интернета. Это благодаря им мы имеем возможность с огромной скоростью получить доступ к информации, которая физически расположена на другом конце света, на другом континенте.

Спутники наблюдения, один из них "Спот", передают информацию, важную для различных отраслей промышленности и отдельных организаций, помогая, например, геологам искать месторождения полезных ископаемых, администрациям крупных городов - планировать застройку, экологам - оценивать уровень загрязнения рек и морей.

Самолеты, корабли и автомобили ориентируются, используя спутники Глобальной системы ориентирования GPS и ГЛОНАСС, а управление морскими коммуникациями осуществляется с использованием навигационных спутников и спутников связи.

Мы уже привыкли видеть в прогнозах погоды снимки, сделанные такими спутниками, как "Метеосат". Другие спутники помогают ученым следить за состоянием окружающей среды, передавая такую информацию, как высота волн и температура морской воды.

Военные спутники обеспечивают армии и органы безопасности самой различной информацией, в том числе данными радиоэлектронной разведки, выполняемой, например, спутниками "Магнум", а также снимками с очень высоким разрешением, которые выполняют секретные спутники оптической и радиолокационной разведки.

В этом разделе сайта мы познакомимся со многими спутниковыми системами, принципами их работы и устройством спутников.

Геостационарная или геосинхронная орбита Кларка

Впервые идея создания спутников связи зародилась вскоре после второй мировой войны, когда А. Кларк в номере журнала «Мир радио» (Wireless World) за октябрь 1945 г. подробно представил свою концепцию ретрансляционной станции связи, расположенной на высоте 35880 км над поверхностью Земли.

Такая орбита называется геосинхронной, геостационарной, или орбитой Кларка. Чем больше высота орбиты спутника, тем больше длительность одного витка вокруг Земли. При движении по круговой орбите высотой 35880 км один виток совершается за 24 ч, т.е. за период суточного вращения Земли. Спутник, движущийся по такой орбите, будет постоянно находиться над определенной точкой поверхности Земли (хотя потребуются регулярные коррекции орбиты для компенсации влияния гравитационного поля Луны).

Кларк считал такую орбиту идеальной для глобальной ретрансляционной связи. Три спутника, находящиеся на геостационарной орбите в плоскости экватора, обеспечивают радиовидимость большей части поверхности Земли (за исключением приполярных областей). При этом исключается влияние ионосферы на радиосвязь. Идея Кларка не была сразу воплощена в жизнь, поскольку в то время не существовало средств доставки спутника даже на низкую околоземную орбиту, не говоря уже о стационарной.

А. Кларк представил свои первоначальные предложения по геостационарному спутнику Совету Британского межпланетного общества в виде меморандума. Этот документ, датированный 25 мая 1945 г., в настоящее время находится в архиве Смитсонского института в Вашингтоне.

Спутник связи «Комстар 1»

Одним из первых геостационарных спутников, применявшихся для повседневных нужд людей, стал спутник «Комстар» . Спутники «Комстар 1» управляются оператором «Комсат» и арендуются AT&T. Их срок службы рассчитан на семь лет. Они ретранслируют сигналы телефонии и телевизионные сигналы в пределах территории США, а также Пуэрто-Рико. Через них может одновременно ретранслироваться до 6000 телефонных разговоров и до 12 телевизионных каналов. Геометрические размеры спутника «Комстар 1» : высота: 5,2 м (17 футов), диаметр: 2,3 м (7,5 фута). Стартовый вес составляет 1410 кг (3109 фунтов).

Приемопередающая антенна связи с вертикальной и горизонтальной поляризационными решетками, позволяет вести и прием, и передачу на одной частоте, но с перпендикулярной поляризацией. За счет этого пропускная способность радиочастотных каналов спутника удваивается. Забегая вперед, можно сказать, что поляризация радиосигнала используется сейчас практически во всех спутниковых системах, особенно это знакомо владельцам спутниковых приёмных телевизионных систем, где при настройке на высокочастотные телеканалы приходится устанавливать либо вертикальную, либо горизонтальную поляризацию.

Еще одна интересная конструктивная особенность состоит в том, что цилиндрический корпус спутника вращается со скоростью около одного оборота в секунду, чтобы обеспечить эффект гироскопической стабилизации спутника в пространстве. Если учесть немалую массу спутника - около полутора тонн - то эффект действительно имеет место. И при этом антенны спутника остаются направленными в определенную точку пространства на Земле, чтобы излучать туда полезный радиосигнал.

Одновременно спутник должен находиться на геостационарной орбите, т.е. "висеть" над Землей "неподвижно", точнее, лететь вокруг планеты со скоростью её вращения вокруг собственной оси в направлении её вращения. Уход с точки позиционирования вследствие влияния различных факторов, самыми значительными из которых являются мешающее притяжение Луны, встреча с космической пылью и другими объектами космоса, отслеживается системой управления и периодически корректируется двигателями системы ориентации спутника.

Владимир Каланов, сайт "Знания-сила".
Лит-ра: Tim Furniss. The history of space vehicles.

Уважаемые посетители!

У вас отключена работа JavaScript . Включите пожалуйста скрипты в браузере, и вам откроется полный функционал сайта!

2.1 VSAT (Very Small Aperture Terminal)

VSAT-станция - станция спутниковой связи с антенной малого диаметра, порядка 1.8 ... 2.4 м. VSAT-станция используются для обмена информацией между наземными пунктами, а также в системах сбора и распределения данных. ССС с сетью земных станций типа VSAT обеспечивают телефонную связь с цифровой передачей речи, а также передачу цифровой информации. При передаче телефонного трафика спутниковые системы образуют групповые тракты (совокупность технических средств, обеспечивающих прохождение группового сигнала, т.е. несколько телефонных подканалов объединяются в один спутниковый) и каналы передачи (совокупность средств, обеспечивающих передачу сигналов от одной точки в другую).

Каналы и групповые тракты ССС широко используются на участках магистральной и внутризоновой телефонных сетей. В ряде случаев на местных линиях связи ССС позволяют: организовать прямые закрепленные каналы и тракты между любыми пунктами связи в зоне обслуживания ИСЗ. А также работать в режиме незакрепленных каналов, при котором спутниковые каналы и тракты могут оперативно переключаться с одних направлений на другие при изменении потребностей трафика на сети, а также использоваться наиболее эффективно - полнодоступными пучками.

К настоящему времени создано несколько ССС с использованием VSAT. Одной из типичных систем такого рода является система, организованная на базе геостационарных спутников. VSAT, работающие в составе данной системы, установлены в ряде стран, в том числе и в России.

Привлекательной особенностью станций VSAT является возможность их размещения в непосредственной близости от пользователей, которые благодаря этому могут обходиться без наземных линий связи.

Кроме систем с закрепленным каналом, эффективных при постоянной передаче информации на высоких скоростях (10 кбит/с и более), существуют системы, использующие временное, частотное, кодовое или комбинированное разделение канала между многими абонентскими ЗС.

Еще одним параметром, позволяющим классифицировать ССС, является использование протокола. Первые спутниковые системы были беспротокольными и предлагали пользователю прозрачный канал. Недостатком таких систем являлась, например, передача информации пользователя без, как правило, подтверждения ее доставки принимающей стороной. Иначе говоря, в подобных системах не оговорены правила диалога между участниками обмена информацией. В этом случае качество ССС определяется качеством спутникового канала. При типичных значениях вероятности ошибки на символ в пределах 10-6..10-7 передача больших файлов через спутниковые системы, даже с использованием различных помехоустойчивых кодов затруднена, если не сказать, что невозможна.

Спутниковая станция типа VSAT по конструктивному признаку состоит из высокочастотного (ODU) и низкочастотного (IDU) модуля. ODU, состоящий из антенны и приемопередатчика, размещается вне здания, в котором устанавливается IDU, состоящий из модема и мультиплексора (каналообразующей аппаратуры).

Стандартный вариант комплектации включает параболическую антенну небольшого диаметра и приёмопередатчик. В зависимости от месторасположения спутниковой станции по отношению к центру зоны освещения спутника и скорости передачи в канале используются более мощные передатчики или антенны большего диаметра. В помещении устанавливается модем и мультиплексор. ODU и IDU соединены между собой радиочастотными (RF) кабелями. По ним идет сигнал промежуточной частоты (IF). IF бывает 70 или 140 МГц.

Внешний блок. Внешний, или как его иногда называют высокочастотный блок, состоит из антенны и приемопередающего блока, который устанавливается на этой антенне. Приемопередающий блок обеспечивает преобразование низкочастотного сигнала, его усиление и передачу “вверх”. Также прием высокочастотного сигнала со спутника его преобразование в низкочастотный и передачу к внутреннему блоку. Антенна. Однозеркальная антенна обычно выполняется по схеме офсет (со смещенным центром). Схема офсет позволяет снизить уровень боковых лепестков идущих параллельно земли и дающих максимальные помехи. Также данная схема позволяет избежать накопления атмосферных осадков на поверхности рефлектора. связь спутниковый цифровой сигнал

Антенна состоит из:

  • * рефлектора (зеркала);
  • * системы облучения;
  • * опорно-поворотного основания (ОПО).

Основной терминал состоит из:

  • * СВЧ блока преобразования частот;
  • * усилителя мощности (SSPA или TWT);
  • * малошумящего конвертора (LNC);
  • * блока электропитания (PS);
  • * соединительных кабелей.

Функция приемопередатчика заключается в преобразовании, после модулятора, сигнала IF, на конверторе вверх, в RF сигнал для передачи через антенну и в преобразовании полученного RF сигнала в сигнал IF, на конверторе вниз, для блока, используемого как демодулятор.

Внутренний блок. Внутренний блок представляет собой 19” стойку с установленными в ней спутниковым модемом и мультиплексором. Иногда в стойке устанавливается и дополнительное оборудование сумматоры, вентиляторы, UPS и т.п. UPS может устанавливаться и вне стойки, отдельно.

Спутниковый модем. Спутниковый модем, в части модулятора предназначен для кодирования передаваемого цифрового потока, пришедшего из мультиплексора, модулирования сигнала по IF, необходимого усиления и передачи сигнала на внешний блок. И приема сигнала IF из внешнего блока, усиления его, демодулирование в цифровой сигнал, декодирование и передачу в мультиплексор, в части демодулятора.

Мультиплексор. Мультиплексор предназначен для мультиплексирования голосовой, факсимильной информации и передаваемых данных. Мультиплексор позволяет скомбинировать ежедневные телефонные и факсимильные сообщения с синхронной и асинхронной передачей данных в один канал, предаваемый по локальным сетям, наземным или спутниковым линиям. Это позволяет снизить телекоммуникационные затраты путем увеличения возможностей передачи важной информации и одновременного уменьшения пропускной способности канала.

Спутниковый Шлюз. Для выхода на сети наземных телекоммуникаций используются спутниковые шлюзы (большие станции к которым подключены через спутник VSAT-станции).

Шлюз может обеспечивать обеспечивает:

  • * выход на телефонные сети;
  • * услуги междугородной связи с выходом на сеть общего пользования;
  • * услуги международной телефонной связи;
  • * выход на специальные телефонные сети, например "Искра-2";
  • * выход на сети передачи данных (РОСНЕТ, INTERNET, RELCOM и др.);
  • * возможность аренды наземного канала до любой точки.

Высокоскоростной выход на INTERNET и другие сети передачи данных.

Шлюз позволяет обеспечить высокоскоростной выход на INTERNET, до 2 Мбит/сек. В данном варианте, возможно, получить доступ ко всем услугам INTERNET (WWW, TelNet, E-mail, FTP и др.). Все описанное выше, также относится и к другим глобальным сетям передачи данных. VSAT - это небольшая станция спутниковой связи с антенной диаметром 0,9 - 3,7 м, предназначенная, главным образом, для надежного обмена данными по спутниковым каналам. Она не требует обслуживания и подключается напрямую к терминальному оборудованию пользователя, выполняя роль беспроводного модема.

Как работает сеть VSAT. Сеть спутниковой связи на базе VSAT включает в себя три основных элемента: центральная земная станция (при необходимости), спутник-ретранслятор и абонентские VSAT терминалы.

Центральная земная станция (ЦЗС). Центральная земная станция в сети спутниковой связи на базе выполняет функции центрального узла и обеспечивает управление работой всей сети, перераспределение ее ресурсов, выявление неисправностей, тарификацию услуг сети и сопряжение с наземными линиями связи. Обычно ЦЗС устанавливается в узле сети, на который приходится наибольший трафик (рис.16).

Каналообразующая аппаратура обеспечивает формирование спутниковых радиоканалов и стыковку их с наземными линиями связи. Каждый из поставщиков систем спутниковой связи применяет свои оригинальные решения этой части ЦЗС, что часто исключает возможность использования для построения сети аппаратуру и абонентские станции других фирм. Обычно эта подсистема строится по модульному принципу, что позволяет по мере роста трафика и количества абонентских станций в сети легко добавлять новые блоки для увеличения ее пропускной способности. Центр управления сетью обеспечивает контроль за работой сети, выявление неисправностей, перераспределение ее ресурсов между абонентами, тарификацию предоставляемых услуг и т.п.

Абонентская станция VSAT. Абонентский VSAT терминал обычно включает в себя антенно-фидерное устройство, наружный внешний радиочастотный блок и внутренний блок (модем). Внешний блок представляет собой небольшой приемо-передатчик или приемник. Внутренний блок обеспечивает сопряжение спутникового канала с терминальным оборудованием пользователя (компьютер, сервер ЛВС, телефон, факс УАТС и т.д.).

Спутник ретранслятор. Сети VSAT строятся на базе геостационарных спутников-ретрансляторов. Это позволяет максимально упрощать конструкцию абонентских терминалов и снабжать их простыми фиксированными антеннами без системы слежения за спутником. Спутник принимает сигнал от земной станции, усиливает его и направляет назад на Землю. Важнейшими характеристиками спутника являются мощность бортовых передатчиков и количество радиочастотных каналов (стволов или транспондеров) на нем. Стандартный ствол имеет полосу пропускания 36 МГц, что соответствует максимальной пропускной способности около 40 Мбит/с. Мощность передатчиков колеблется от 20 до 100 и более ватт. Для обеспечения работы через малогабаритные абонентские станции типа VSAT требуются передатчики с выходной мощностью около 40 Вт. Действующие российские спутники имеют передатчики меньшей мощности, поэтому большое количество российских сетей строятся на базе зарубежных спутников.

2.2 SCPC (Single Channel per Carrier)

SCPC (Single Channel per Carrier, один канал на несущую) - классическая технология спутниковой связи. Сущность ее очень проста: для связи двух земных станций А и В на спутнике выделяются две полосы частот: одна для передачи в направлении А-В, другая - для передачи в направлении В-А.

Эти полосы частот «монопольно» используются только станциями А и В и не могут быть использованы кем-то еще. Таким образом, SCPC - выделенный физический канал связи.

В России и в Европе существуют сети VSAT-станций, работающих на принципе SCPC. Стандартный вариант связи SCPC где используется связь по принципу “point-to-point” (“точка-точка”) - это две VSAT-станции, соединенные спутниковым каналом и расположенные у пользователей.

При наличии такого канала пользователи могут устанавливать связь друг с другом в любой момент. Чаще приходится иметь дело с конфигурацией сети типа “звезда” (принцип “центр с каждым”), когда имеется одна станция в головном офисе (отделении, представительстве и т.п.) и несколько станций в удаленных отделениях, филиалах. При использовании данной схемы возможна организация потоков цифровой информации со скоростью от 32 кбит/сек до 8 Мбит/с и обеспечение телефонной, телефаксной связи между центром и периферией. Данная система открывает возможность выхода через спутниковые станции на международный телепорт в Берлине и далее в любую страну мира. Кроме этого возможно получение прямого московского номера и через телепорт в Москве возможно ведение телефонных переговоров по странам бывшего СССР. В целом следует отметить, что SCPC-система является очень мощной альтернативой арендованных некоммутируемых каналов, ведомственных линий и т.п. Весьма привлекательна она как средство передачи больших объемов информации с высокой скоростью. Вследствие использования спутниковых цифровых каналов, она является некритичной к дальности и помехозащищенной.

Подключение удаленной базовой станции сотовой связи. Это единственный способ подключения удаленной базовой станции сотовой связи через спутник, который гарантирует качественную связь и функционирование всех сервисов сотового оператора в полном объеме. Используется пара модемов с последовательными синхронными интерфейсами G.703, через которые передается цифровой поток Е1 (2048 кбит/с), полный или дробный.

Канальный доступ в Интернет. Спутниковый канал SCPC можно использовать в качестве внешнего канала доступа в Интернет для провайдерского узла в регионе. Как правило, в этом случае спутниковый канал связи «приземляется» на узел крупного оператора связи в Москве. Обычно у такого оператора есть центральная земная станция с антенной больших размеров и мощным передатчиком. За счет этого его клиент в регионе может использовать земную станцию с антенной несколько меньших размеров.

Спутниковая сеть радиовещания. PC Audio- классическая технология доставки сигналов сетевой FM-радиостанции ее партнерам-ретрансляторам в других городах. Особенно актуально использование SCPC для региональных радиостанций, у которых студии находятся не в Москве. Аренда спутникового канала SCPC обходится дешевле, чем аренда такого же по скорости канала любой другой технологии. Правда, на приемных станциях приходится использовать довольно дорогое специфическое оборудование. Однако, станций-ретрансляторов, как правило, немного, и стоимость единожды купленного оборудования быстро окупается экономией на платежах за связь. Земная станция спутниковой связи, установленная в студии, работает только на передачу. На ней устанавливается обычный спутниковый модем с последовательным интерфейсом RS-449 и кодер ComStream DAC700, который преобразует звук в последовательный цифровой поток со скоростью 128…392 кбит/с. Используется цифровое сжатие звука MPEG-1 Layer3. На станциях-ретрансляторах устанавливаются обычные приемные спутниковые антенны - такие же, как для спутникового телевидения. К антенне подключается специфический приемник ComStream ABR202, который сочетает в себе однонаправленный спутниковый модем и декодер MPEG. Между модемом земной станции и сетевым оборудованием провайдера устанавливается маршрутизатор.

TES-система предназначена для обмена телефонной и цифровой информацией в сетях, что построены по принципу “mesh” (“каждый с каждым”) или, другими словами, в сетях с полным доступом. Это означает, что возможна телефонная связь между любыми двумя абонентами сети, кроме этого абонентам обеспечивается выход в международную сеть общего пользования через телепорт (Gateway) в Берлине. В простейшей конфигурации обеспечивается связь по одному телефонному или факсимильному каналу. Абоненту предоставляется дополнительная возможность организации передачи цифровой информации между двумя станциями, входящими в сеть. Сеть работает по принципу DAMA - когда абонент не имеет жестко закрепленного за ним спутникового канала, а этот канал предоставляется ему по первому требованию, причем с высокой (более 99 %) вероятностью. Этот способ позволяет уменьшить число арендуемых спутниковых каналов и обеспечить приемлемые цены для абонентов. В целом, использование именно TES-системы является самым оперативным и действенным способом доступа в международную телефонную сеть, а также хорошим средством связи с теми областями, которые обладают либо неразвитой инфраструктурой связи, либо вообще не имеют таковой.

Система персональных земных станций (Personal Earth Station) PES™- спутниковая диалоговая пакетно-коммутируемая сеть, предназначенная для обмена телефонной и цифровой информацией в рамках ССС с топологией типа "звезда", с возможностью полного дуплекса. Система располагает крупной и дорогой центральной станцией (HUB station) и многими небольшими и недорогими периферийными станциями PES или remote. Большая эффективная излучаемая мощность высокое качество приема центральной станции делает возможным применение на PES малых антенн диаметром 0,5-1,8 м и маломощных передатчиков мощностью 0,5-2 Вт.

Это значительно снижает стоимость абонентской ЗС. В отличие от других вышеназванных систем, в этой передача информации всегда идет через HUB. С точки зрения энергетики системы и ее стоимости (соответственно и стоимости предлагаемых услуг) оптимально расположение центральной ЗС в центре зоны освещения спутника. Например, в сети, работающей через спутник INTELSAT-904, центральная ЗС расположена в Москве.

Достоинства СКС:

Спутниковые системы связи могут различаться также и типом передаваемого сигнала, который может быть цифровым или аналоговым. Передача информации в цифровой форме обладает рядом преимуществ по сравнению с другими методами передачи. К ним относятся:

  • * простота и эффективность объединения многих независимых сигналов и преобразования цифровых сообщений в “пакеты” для удобства коммутации;
  • * меньшие энергозатраты по сравнению с передачей аналогового сигнала;
  • * относительная нечувствительность цифровых каналов к эффекту накопления искажений при ретрансляциях, обычно представляющему серьезную проблему в аналоговых системах связи;
  • * потенциальная возможность получения очень малых вероятностей ошибок передачи и достижения высокой верности воспроизведения переданных данных путем обнаружения и исправления ошибок;
  • * конфиденциальность связи;
  • * гибкость реализации цифровой аппаратуры, допускающая использование микропроцессоров, цифровую коммутацию и применение микросхем с большей степенью интеграции компонентов.

Недостатки СКС:

Слабая помехозащищённость. Огромные расстояния между земными станциями и спутником являются причиной того, что отношение сигнал/шум на приемнике очень невелико (гораздо меньше, чем для большинства радиорелейных линий связи). Для того чтобы в этих условиях обеспечить приемлемую вероятность ошибки, приходится использовать большие антенны, малошумящие элементы и сложные помехоустойчивые коды. Особенно остро эта проблема стоит в системах подвижной связи, так как в них есть ограничение на размер антенны и, как правило, на мощность передатчика.

Влияние атмосферы. На качество спутниковой связи оказывают сильное влияние эффекты в тропосфере и ионосфере. Поглощение в тропосфере. Поглощение сигнала атмосферой находится в зависимости от его частоты. Максимумы поглощения приходятся на 22,3 ГГц (резонанс водяных паров) и 60 ГГц (резонанс кислорода). В целом, поглощение существенно сказывается на распространении сигналов с частотой выше 10 ГГц (то есть, начиная с Ku-диапазона). Кроме поглощения, при распространении радиоволн в атмосфере присутствует эффект замирания, причиной которому является разница в коэффициентах преломления различных слоев атмосферы.

Ионосферные эффекты. Эффекты в ионосфере обусловлены флуктуациями распределения свободных электронов. К ионосферным эффектам, влияющим на распространение радиоволн, относят: мерцание, поглощение, задержку распространения, дисперсию, изменение частоты, вращение плоскости поляризации. Все эти эффекты ослабляются с увеличением частоты. Для сигналов с частотами, большими 10 ГГц, их влияние невелико.

Задержка распространения сигнала. Проблема задержки распространения сигнала, так или иначе, затрагивает все спутниковые системы связи. Наибольшей задержкой обладают системы, использующие спутниковый ретранслятор на геостационарной орбите. В этом случае задержка, обусловленная конечностью скорости распространения радиоволн, составляет примерно 250 мс, а с учетом мультиплексирования, коммутации и задержек обработки сигнала общая задержка может составлять до 400 мс. Задержка распространения наиболее нежелательна в приложениях реального времени, например, в телефонной связи. При этом если время распространения сигнала по спутниковому каналу связи составляет 250 мс, разница во времени между репликами абонентов не может быть меньше 500 мс.

В некоторых системах (например, в системах VSAT, использующих топологию «звезда») сигнал дважды передается через спутниковый канал связи (от терминала к центральному узлу, и от центрального узла к другому терминалу). В этом случае общая задержка удваивается.

3 Обобщенная характеристика состояния и тенденций развития ССС

Для организации каналов связи преимущественно используются космические аппараты (КА), расположенные на геостационарной орбите (ГСО). Возможности создания телекоммуникационных сетей на основе спутников на негеостационарных орбитах ограничены незначительной зоной обслуживания, невозможностью предоставления услуг на постоянной основе и рядом других факторов. Большинство этих факторов может быть устранено при использовании группировки спутников, но появляется необходимость слежения за ними. Преимущественно такие группировки используются для организации подвижной связи и радиовещания. Наибольшие из них Iridium (88 КА), Globalstar (48 КА), Orbcomm (31 КА). Для предоставления телекоммуникационных услуг, в особенности вещания, используются геостационарные спутниковые системы связи.

Ежегодно на ГСО выводится от 15 до 30 КА и завершают свою работу 10-15 спутников. За последние 10 лет ежегодный усредненный прирост количества КА составил около 3 %. Однако, при рассмотрении вопроса о росте потребностей в спутниковых каналах, чем обуславливаются запуски КА, следует учитывать не абсолютный прирост, а возможности выводимых на ГСО спутников. Наблюдается тенденция к запуску более эффективных в отношении прибыль/цена «тяжелых» КА, имеющих телекоммуникационную полезную нагрузку около 50 стволов и более. Из 83 работающих «тяжелых» КА 69 было выведено на орбиту после 2000 года (33 % от общего количества запусков).

По состоянию на начало марта 2011 года на геостационарной орбите (ГСО) в различных службах функционирует 319 спутников-ретрансляторов гражданского назначения. Услуги телекоммуникаций предоставляют 67 международных и национальных операторов, которым принадлежат 89 спутниковых систем связи. ССС зарегистрированы в 35 странах, перечень которых приведен в Приложении А.

В список стран, приведенный в Приложении А, следует включить Казахстан, Нигерию, Аргентину, потерявшие к настоящему времени свои спутники, но восстанавливающих функционирование ССС. В этом году Казахстан в рамках национальной системы спутниковой связи Kazsat выведет на ГСО два КА, Нигерия в рамках Nigcomsat - три КА. Аргентина строит новую систему спутниковой связи Arsat в составе трех КА. Спутники, находящиеся на ГСО, имеют около одиннадцати тысяч транспондеров разных служб, мощности и емкости, из которых задействовано около 8000 столов. Поскольку транспондеры значительно отличаются полосой частот, то более приемлемым критерием для оценки распределения является суммарная полоса частот стволов.

По состоянию на конец февраля 2011 г. общий частотный ресурс транспондеров выведенных на ГСО спутников достигла примерно 450 ГГц полосы частот, из которого более половины в диапазоне Ku (51,4 %), 35,1 % в диапазоне С и 12,0 % в диапазоне Ka.

При ежегодном увеличении количества действующих КА на 3 % ежегодный прирост частотного ресурса заметно больше, примерно 13 %, что связано с запуском «тяжелых» КА. За десять лет общая полоса спутниковых каналов выросла примерно в два раза. В диапазонах Ku и C наблюдается почти линейный рост суммарной емкости, более интенсивными темпами внедряется диапазон Ka.

Тенденции к монополизации на рынке спутниковых телекоммуникаций начали проявляться с 2001 года после слияния SES Astra с GE Americom и образования корпорации SES Global. В 2006 г. корпорация приобрела ССС NSS, в 2009 г. - часть расформированной ССС Protostar, а в марте 2010 г. полностью выкупила ССС Sirius. Кроме того SES Global владеет 70 % акций ССС Ciel и 49 % акций оператора Quetzsat, планирующего запуск первого КА в 2011 г.

Международная организация INTELSAT после приобретения в 2003 г. части ССС Telstar (4 КА) и слияния с PanAmSat (2005 г.) стала наибольшим спутниковым оператором. Дополнительно в 2009 г. организация выкупила три КА Amos 1, Protostar 2 и JCSat 4R.

Третий по величине оператор EUTELSAT проявил заинтересованность в приобретении ССС Satmex, под его контролем находится около трети активов оператора Hispasat.

Канадский оператор Telesat в 2007 г. приобрел остатки ССС Telstar (4 КА) и стал четвертым в мире международным оператором.

В 2008 г. японские операторы JSAT и SCC (ССС Superbird) образовали корпорацию JSAT Perfec Pro, в которую входит также ССС NSat и частично ССС Horizons.

В 2006 г. оператор Cablevision перешел под управление оператора Echostar, который большей своей частью входит в корпорацию Dish Network, находящуюся под контролем группы DIRECTV, владеющей ССС DTV и контролирующей ССС Spaceway. Можно говорить о практическом объединении трех систем DTV, Echostar и Spaceway.

В 2010 г. три китайских оператора систем Chinasat, Sinosat, Chinastar объединились и создали новую организацию Chinasat.

В 2010 году было объявлено образование новой организации Sirius XM Radio после слияния XM Satellite Radio и Sirius FM Radio. Космический флот данного оператора кроме шести геостационарных спутников включает четыре низкоорбитальных КА.

Имеющаяся тенденция к монополизации не является сдерживающим фактором развития малых по количеству КА ССС. Планируется не только запуск спутников на замену отработавшим свой срок, но и создание новых систем, включая национальные ССС.

В течение последующих трех лет ожидается пополнение списка стран создающих национальные системы спутниковой связи:

  • - 2011 г., Иран: ССС Zohreh (2 КА);
  • - 2011 г., ОАЭ: ССС Yachsat (2 КА);
  • - 2011 г., ОАЭ совместно с Иорданией: ССС SmartSat (1 КА);
  • - 2012 г., Украина: ССС Lybid (1 КА);
  • - 2012 г., Азербайджан: ССС AzerSpace, (2 КА), один КА совместно с Малайзией;
  • - 2013 г., Катар: ССС Eshail (1 КА), совместно с Eutelsat;
  • - 2013 г., Боливия: ССС Tupac Katani (1 КА);
  • - 2013 u/? Kfjc^ CCC Laosat (1 RF)

Страны, имеющие спутниковые группировки, в соответствии с потребностями рынка создают новые системы:

  • - 2011 г., Россия: ССС Luch (3 КА) для услуг передачи данных;
  • - 2011 г., США: Viasat (2 КА) для предоставления услуг высокоскоростного доступа;
  • - 2011 г., Мексика: ССС QuetzSat (1 КА) для предоставления услуг вещания и фиксированной связи;
  • - 2012 г., США: ССС Jupiter (1 КА) и ССС OHO (3 КА) для предоставления услуг высокоскоростного доступа и телевидения высокой четкости;
  • - 2012 г., Мексика: ССС Mexsat (3 КА), которые будут работать в подвижной, фиксированной и вещательной службах;
  • - 2012 г., Австралия: ССС Jabiru (1 КА) для предоставления услуг вещания и фиксированной связи;
  • - 2013 г., ОАЭ: S2M (1 КА) для предоставления услуг вещания мобильным пользователям;
  • - 2013 г., Канада: ССС Canuk (1 КА) для системы высокоскоростного доступа.

В рамках системы подвижной связи Inmarsat новая серия КА пятого поколения и два КА Alfasat и Europesat ориентируются на новый для данного оператора вид услуг - вещание на подвижные объекты.

Приоритетным видом услуг остается спутниковое вещание. Кроме стандартного набора услуг непосредственного вещания, раздачи программ на сети наземного эфирного и кабельного вещания через спутники ETS 8 и MBSat уже ведется экспериментальное телевизионное вещание на подвижные объекты. Для оказания такого вида услуг планировался запуск трех КА (Eutelsat 2A, Echostar 13 или CMBstar и S2M 1), из которых Eutelsat 2A был запущен, однако неполадки с развертыванием антенны не позволили начать реализацию услуг в европейском регионе. Спутниковые каналы интенсивно используются для предоставления услуг высококачественного и интерактивного вещания, началось внедрение 3D-телевидения.

Вторым по приоритетности стало предоставление услуг высокоскоростного доступа. К функционирующим специализированным спутникам WildBlue 1, Spaceway 3, IPStar 1, недавно выведеных на ГСО КА Eutelsat KaSat и Hylas добавятся ориентированные на эти услуги спутники Viasat (2 КА), OHO (3 КА), Canuk, 3 КА Inmarsat пятого поколения, Jupiter и другие.

Дальнейшее направление развития спутниковых телекоммуникационных систем связывается с конвергенцией услуг и функций систем, далеких по принципам действия и назначениям, путем взаимопроникновения и использования общих технико-технологических решений. Конвергенция будет всё больше стирать различия между отдельными видами услуг, все сети будут предоставлять любой их вид в значительно расширенной номенклатуре и в большем объеме на основе единой технологической платформы, обеспечивающей развитие интерактивного и непосредственного вещания, высококачественного вещания, систем высокоскоростного доступа, дистанционного обучения, телемедицины, телебанкинга и прочих мультисервисных приложений. Корпоративный характер данных услуг из единого центра на пользовательскую сеть делает спутниковые системы связи наиболее пригодными для их предоставления. Новые услуги займут до 80 % спутникового ресурса.

Общий прирост объемов услуг спутниковых каналов за пятилетие составляет 76 %, а увеличение доходов по службам телекоммуникации соответственно составляет: ССВ - 82 %, ФСС - 97 %, ПСС - 29 %. Отметим, что приведенные в таблице 2 данные по услугам доступа относятся к предоставляемым по каналам вещания. Данный вид услуг в значительной мере также обеспечивается и каналами фиксированной связи, что в таблице отдельной графой из-за отсутствия информации не отмечено. Основную долю доходов ССС в 2009 г. (81 %) обеспечивает спутниковая служба вещания (ССВ), что подчеркивает степень ее приоритетности. Распределение уровня доходности между службами по опубликованным за последние пять лет данным Satellite Industry Association приведено в Приложении Б. Следует подчеркнуть, что телекоммуникационные услуги по спутниковым каналам определяют основные доходы от деятельности в космической отрасли индустрии. Из общего объема доходов равного 160,9 млрд. долл., доля от доходов телекоммуникаций составляет 58,2 %.

Возросла энерговооруженность КА. Мощности стволов в наиболее используемых диапазонах в среднем составляет: Ku 120 - 150 Вт, C - 50 - 60 Вт. Удельная мощность, приходящаяся на единицу полосы, достигла 1,2 Вт/МГц, что дает возможность использования в канале более эффективных многопозиционных сигналов и высокоскоростных каскадных кодов.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то